Ribozyme- and siRNA-Mediated mRNA Degradation

A General Introduction
  • Mouldy Sioud
Part of the Methods in Molecular Biology™ book series (MIMB, volume 252)


A number of recent discoveries in the RNA field have opened up a wealth of opportunities to specifically target mRNA for the development of therapeutics and/or the elucidation of gene function. Novel agents such as ribozymes, DNAzymes, and siRNAs are emerging as effective strategies that are antigene agents (1).


Hammerhead Ribozyme Hairpin Ribozyme Tobacco Ringspot Virus External Guide Sequence Exogenous Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sioud, M. (2001) Nucleic acid enzymes as a novel generation of anti-gene agents. Curr. Mol. Med. 1, 575–588.PubMedCrossRefGoogle Scholar
  2. 2.
    Zaug, A. J., Been, M. D., and Cech, T. R. (1986) The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429–433.PubMedCrossRefGoogle Scholar
  3. 3.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857.PubMedCrossRefGoogle Scholar
  4. 4.
    Forster, A. C. and Altman, S. (1990) External guide sequences for an RNA enzyme. Science 249, 783–786.PubMedCrossRefGoogle Scholar
  5. 5.
    Symons, R. H. (1994) Ribozymes. Curr. Opin. Struct. Biol. 4, 322–330.CrossRefGoogle Scholar
  6. 6.
    Santoro, S. W. and Joyce, G. F. (1996). A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4264–4266.Google Scholar
  7. 7.
    Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  8. 8.
    Forster, A. C. and Symons, R. H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220.PubMedCrossRefGoogle Scholar
  9. 9.
    Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide. Nature 328, 596–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Haseloff, J. and Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuwabara, T., Warashina, M., Orita, M., Koseki, S., Ohkawa, J., and Taira, K. (1998) Formation in vitro and in cells of a catalytically active dimmer by tRNAval-driven short ribozymes. Nat. Biotechnol. 16, 961–965.PubMedCrossRefGoogle Scholar
  12. 12.
    Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Hampel, A. and Tritz, R. (1989) RNA catalytic properties of the minimum (−) sTRSV sequence. Biochemistry 28, 4929–4933.PubMedCrossRefGoogle Scholar
  14. 14.
    Berzal-Herranz, A., Joseph, S., Chowrira, B. M., Butcher, S. E., and Bruke, J. M. (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 12, 2567–2574.PubMedGoogle Scholar
  15. 15.
    Sullenger, B.A. and Cech, T.R. (1994) Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371, 619–622PubMedCrossRefGoogle Scholar
  16. 16.
    Foster, A. C. and Altman, S. (1990) External guide sequences for an RNA enzyme. Science 249, 783–786.CrossRefGoogle Scholar
  17. 17.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  18. 18.
    Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747.PubMedCrossRefGoogle Scholar
  19. 19.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  20. 20.
    Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–501.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M.-J., Ehsani, A., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.PubMedGoogle Scholar
  22. 22.
    Arap, W., Pasqualini, R., and Ruoslahti, E. (1988) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380.CrossRefGoogle Scholar
  23. 23.
    Shadidi, M. and Sioud, M. (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 17, 256–258.PubMedGoogle Scholar
  24. 24.
    Hertel, K. J., Pardi, A., Uhlenbeck, O. C., Koizumi, M., Ohtsuka, E., Uesugi, S., et al. (1992) Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Mouldy Sioud
    • 1
  1. 1.Department of Immunology, Molecular Medicine GroupThe Norwegian Radium HospitalOsloNorway

Personalised recommendations