Optical Coherence Tomography Imaging in Developmental Biology

  • Stephen A. Boppart
  • Mark E. Brezinski
  • James G. Fujimoto
Part of the Methods in Molecular Biology™ book series (MIMB, volume 135)

Abstract

Optical coherence tomography (OCT) is an attractive imaging technique for developmental biology because it permits the imaging of tissue microstructure in situ, yielding micron-scale image resolution without the need for excision of a specimen and tissue processing. OCT enables repeated imaging studies to be performed on the same specimen in order to track developmental changes. OCT is analogous to ultrasound B mode imaging except that it uses low-coherence light rather than sound and performs cross-sectional imaging by measuring the backscattered intensity of light from structures in tissue (1). The principles of OCT imaging are shown schematically in Fig. 1. The OCT image is a gray-scale or false-color two-dimensional (2-D) representation of backscattered light intensity in a cross-sectional plane. The OCT image represents the differential backscattering contrast between different tissue types on a micron scale. Because OCT performs imaging using light, it has a one- to two-order-of-magnitude higher spatial resolution than ultrasound and does not require specimen contact.
Fig. 1.

OCT imaging is performed by directing an optical beam at the object to be imaged, and the echo delay of backscattered light is measured.

References

  1. 1.
    Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., et al. (1991) Optical coherence tomography. Science 254, 1178–1181.PubMedCrossRefGoogle Scholar
  2. 2.
    Hee, M. R., Izatt, J. A., Swanson, E. A., Huang, D., Lin, C. P., Schuman, J. S., et al. (1995) Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332.PubMedGoogle Scholar
  3. 3.
    Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E., Schuman, J. S., Duker, J. S., et al. (1995) Imaging of macular disease with optical coherence tomography (OCT). Ophthalmology 102, 217–229.PubMedGoogle Scholar
  4. 4.
    Puliafito, C. A., Hee, M. R., Schuman, J. S., and Fujimoto, J. G. (1995) Optical Coherence Tomography of Ocular Diseases. Slack, Thorofare, NJ.Google Scholar
  5. 5.
    Schmitt, J. M., Knuttel, A., and Bonner, R. F. (1993). Measurement of the optical properties of biological tissue using low-coherence reflectometry. Appl. Opt. 32, 6032–6042.PubMedCrossRefGoogle Scholar
  6. 6.
    Schmitt, J. M., Knuttel, A., Yadlowsky, M., and Eckhaus, A. A. (1994) Optical coherence tomography of a dense tissue: Statistics of attenuation and backscattering. Phys. Med. Biol. 39, 1705–1720.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujimoto, J. G., Brezinski, M. E., Tearney, G. J., Boppart, S. A., Bouma, B. E., et al. (1995) Biomedical imaging and optical biopsy using optical coherence tomography. Nat. Med. 1, 970–972.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitt, J. M., Yadlowsky, M. J., and Bonner, R. F. (1995) Subsurface imaging of living skin with optical coherence microscopy. Dermatology 191, 93–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Sergeev, A., Gelikonov, B., Gelikonov, G., Feldchetin, F., Pravdenki, K., Kuranov, R., et al. (1995) High-spatial resolution optical-coherence tomography of human skin and mucus membranes in Conference on Lasers and Electro Optics ‘95, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, DC), paper CThN4.Google Scholar
  10. 10.
    Brezinski, M. E., Tearney, G. J., Bouma, B. E., Izatt, J. A., Hee, M. R., Swanson, E. A., et al. (1996) Optical coherence tomography for optical biopsy: Properties and demonstration of vascular pathology. Circulation 93, 1206–1213.PubMedGoogle Scholar
  11. 11.
    Tearney, G. J., Brezinski, M. E., Boppart, S. A., Bouma, B. E., Weissman, N., Southern, J. F., et al. (1996) Catheter-based optical imaging of a human coronary artery. Circulation 94, 3013.PubMedGoogle Scholar
  12. 12.
    Brezinski, M. E., Tearney, G. J., Weissman, N. J., Boppart, S. A., Bouma, B. E., Hee, M. R., et al. (1997) Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound. Br. Heart J. 77, 397–404.Google Scholar
  13. 13.
    Brezinski, M. E., Tearney, G. J., Boppart, S. A., Swanson, E. A., Southern, J. F., and Fujimoto, J. G. (1997) Optical biopsy with optical coherence tomography, feasibility for surgical diagnostics. J. Surg. Res. 71, 32–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Boppart, S. A., and Fujimoto, J. G. (1997) Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am. J. Gastroenterol. 92, 1800–1804.PubMedGoogle Scholar
  15. 15.
    Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Boppart, S. A., and Fujimoto, J. G. (1997) Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol. 157, 1915–1919.PubMedCrossRefGoogle Scholar
  16. 16.
    Bouma, B., Tearney, G. J., Boppart, S. A., Hee, M. R., Brezinski, M. E., and Fujimoto, J. G. (1995) High-resolution optical coherence tomographic imaging using a mode-locked Ti∶Al2O3 laser source. Opt. Lett. 20, 1486–1489.PubMedCrossRefGoogle Scholar
  17. 17.
    Bouma, B. E., Tearney, G. J., Biliinski, I. P., Golubovic, B., and Fujimoto, J. G. (1996) Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Opt. Lett. 21, 1839–1842.PubMedCrossRefGoogle Scholar
  18. 18.
    Tearney, G. J., Bouma, B. E., Boppart, B. E., Golubovic, B., Swanson, E. A., and Fujimoto, J. G. (1996) Rapid acquisition of in vivo biological images using optical coherence tomography. Opt. Lett. 21, 1408–1410.PubMedCrossRefGoogle Scholar
  19. 19.
    Tearney, G. J., Bouma, B. E., and Fujimoto, J. G. (1997) High-speed phase-and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22, 1811–1813.PubMedCrossRefGoogle Scholar
  20. 20.
    de Boer, J. F., Milner, T. E., van Germert, M. J. C., and Stuart Nelson, J. (1997) Two dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography. Opt. Lett. 22, 934–936.Google Scholar
  21. 21.
    Chen, Z., Milner, T. E., Srinivas, S., Wang, X., Malekafzali, A., van Germert, M. J. C., et al. (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22, 1119–1120.PubMedCrossRefGoogle Scholar
  22. 22.
    Izatt, J. A., Kulkarni, M. D., Yazdanfar, S., Barton, J. K., and Welch, A. J. (1997) In vivo bidirectional color doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22, 1439–1441.PubMedCrossRefGoogle Scholar
  23. 23.
    Tearney, G. J., Boppart, S. A., Bouma, B. E., Brezinski, M. E., Weissman, N. J., Southern, J. F., et al. (1996) Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545.PubMedCrossRefGoogle Scholar
  24. 24.
    Boppart, S. A., Bouma, B. E., Pitris, C., Tearney, G. J., Fujimoto, J. G., and Brezinski, M. E. (1997) Forward-scanning instruments for optical coherence tomographic imaging. Opt. Lett. 22, 1618–1620.PubMedCrossRefGoogle Scholar
  25. 25.
    Tearney, G. J., Brezinski, M. E., Bouma, B. E., Boppart, S. A., Pitris, C., Southern, J. F., et al. (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039.PubMedCrossRefGoogle Scholar
  26. 26.
    Takada, K., Yokohama, I., Chida, K., and Noda, J. (1987) New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26, 1603–1606.PubMedCrossRefGoogle Scholar
  27. 27.
    Fercher, A. F., Mengedoht, K., and Werner, W. (1988) Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–190.PubMedCrossRefGoogle Scholar
  28. 28.
    Hitzenberger, C. K. (1991) Measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 32, 616–624.PubMedGoogle Scholar
  29. 29.
    Chernikov, S. V., Zhu, Y., Taylor, J. R., Platonov, N. S., Samartsev, I. E., and Gapontsev, V. P. (1996) 1.08–2.2 μm supercontinuum generation from Yb3+ doped fiber laser. Conference on Lasers and Electro Optics CLEO 96, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, DC) paper CTuU4.Google Scholar
  30. 30.
    Swanson, E. A., Chinn, S. R., Hodgson, C. W., Bouma, B. E., Tearney, G. J., and Fujimoto, J. G. (1996) Spectrally shaped rare-earth doped fiber ASE sources for use in optical coherence tomography. Conference on Lasers and Electro Optics CLEO 96, Vol. 9 of OSA 1996 Technical Digest, (Optical Society of America, Washington, DC) paper CTuU5.Google Scholar
  31. 31.
    Chernikov, V., Taylor, J. R., Gapontsev, V. P., Bouma, B. E., and Fujimoto, J. G. (1997) A 75 nm, 30 mW superfluorescent ytterbium fiber source operation around 1.06 μm. Conference on Lasers and Electro Optics CLEO 97, Vol. 11 of OSA 1997 Technical Digest, (Optical Society of America, Washington, DC) paper CTuG8.Google Scholar
  32. 32.
    Bouma, B. E., Nelson, L. E., Tearney, G. J., Jones, D. J., Brezinski, M. E., and Fujimoto, J. G. (1998) Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.8 μm using Er-and Tm-doped fiber sources. J. Biomed. Opt. 3, 76–79.CrossRefGoogle Scholar
  33. 33.
    Boppart, S. A., Brezinski, M. E., Bouma, B. E., Tearney, G. J., and Fujimoto, J. G. (1996) Investigation of developing embryonic morphology using optical coherence tomography. Dev. Biol. 177, 54–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Boppart, S. A., Brezinski, M. E., Tearney, G. J., Bouma, B. E., and Fujimoto, J. G. (1996) Imaging developing neural morphology using optical coherence tomography. J. Neurosci. Methods 2112, 65–72.CrossRefGoogle Scholar
  35. 35.
    Nieuwkoop, P. D. and Faber, J. (1994) Normal Table of Xenopus Laevis. Garland, New York.Google Scholar
  36. 36.
    Boppart, S. A., Tearney, G. J., Bouma, B. E., Southern, J. F., Brezinski, M. E., and Fujimoto, J. G. (1997) Noninvasive assessment of the developing xenopus cardiovascular system using optical coherence tomography. Proc. Natl. Acad. Sci. 94, 4256–4261.PubMedCrossRefGoogle Scholar
  37. 37.
    Boppart, S. A., Bouma, B. E., Pitris, C., Southern, J. F., Brezinski, M. E., and Fujimoto, J. G. (1998) In vivo cellular optical coherence tomography imaging. Nat. Med. 4, 861–865.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Stephen A. Boppart
    • 1
  • Mark E. Brezinski
    • 2
  • James G. Fujimoto
    • 1
  1. 1.Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridge
  2. 2.Cardiac Unit and Department of MedicineMassachusetts General Hospital and Harvard Medical SchoolBoston

Personalised recommendations