Antibody Engineering pp 301-318

Part of the Methods in Molecular Biology™ book series (MIMB, volume 248)

Antibody Production in Transgenic Plants

  • Eva Stoger
  • Stefan Schillberg
  • Richard M. Twyman
  • Rainer Fischer
  • Paul Christou

Abstract

Antibodies bind with great affinity and specificity to their target antigens, allowing them to be exploited in research, medicine, agriculture, and industry (1, 2, 3). It is estimated that more than 1,000 antibody-based pharmaceuticals are currently in development, and about 200 of these are already undergoing clinical evaluation in humans. Such widespread use of antibodies would benefit from a safe, convenient, and cost-effective system for large-scale production.

References

  1. 1.
    Chadd, H. E. and Chamow, S. M. (2001) Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188–194.PubMedCrossRefGoogle Scholar
  2. 2.
    Schillberg, S., Zimmermann, S., Zhang, M.-Y., and Fischer, R. (2001) Antibody-based resistance to plant pathogens. Transgenic Res. 10, 1–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Gavilondo, J. V. and Larrick, J. W. (2000) Antibody production technology in the millennium. Biotechniques 29, 128–145.PubMedGoogle Scholar
  4. 4.
    Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.PubMedCrossRefGoogle Scholar
  5. 5.
    Kipriyanov, S. M. and Little, M. (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12, 173–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Green, L. (1999) Antibody engineering via genetic engineering of the mouse: xenomouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Griffiths, A. and Duncan, A. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108.PubMedCrossRefGoogle Scholar
  8. 8.
    Sidhu, S. S. (2000) Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11, 610–616.PubMedCrossRefGoogle Scholar
  9. 9.
    Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12, 180–187.PubMedCrossRefGoogle Scholar
  10. 10.
    Raju, T. S., Briggs, J., Borge, S. M., and Jones, A. J. S. (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiolgy 10, 477–486.CrossRefGoogle Scholar
  11. 11.
    Houdebaine, L. M. (2000) Transgenic animal bioreactors. Transgenic Res. 9, 305–320.CrossRefGoogle Scholar
  12. 12.
    Sánchez, L., Ayala, M., Freyre, F., Pedroso, I., Bell, H., Falcón, V., et al. (1999) High cytoplasmic expression in E. coli, purification and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J. Biotechnol. 72, 13–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12, 450–454.PubMedCrossRefGoogle Scholar
  14. 14.
    Stoger, E., Sack, M., Fischer, R., and Christou, P. (2002) Plantibodies: applications, advantages and bottlenecks. Curr. Opin. Biotechnol. 13, 161–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Daniell, H., Streatfield, S. J., and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceutical and edible vaccines in plants. Trends Plant Sci. 6, 219–226.PubMedCrossRefGoogle Scholar
  16. 16.
    Cabanes-Macheteau, M., Fitchette-Laine, A. C., Loutelier-Bourhis, C., Lange, C., Vine, N., Ma, J., et al. (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9, 365–372.PubMedCrossRefGoogle Scholar
  17. 17.
    Chargelegue, D., Vine, N., van Dolleweerd, C., Drake, P. M., and Ma, J. (2000) A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res. 9, 187–194.PubMedCrossRefGoogle Scholar
  18. 18.
    Bakker, H., Bardor, M., Molthoff, J. W., Gomord, V., Elbers, I., Stevens, L. H., et al. (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98, 2899–2904.PubMedCrossRefGoogle Scholar
  19. 19.
    Kusnadi, A. R., Nikolov, Z. L., and Howard, J. A. (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioeng. 56, 473–484.PubMedCrossRefGoogle Scholar
  20. 20.
    Stoger, E., Sack, M., Perrin, Y., Vaquero, C., Torres, E., Twyman, R. M., et al. (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breeding 9, 149–158.CrossRefGoogle Scholar
  21. 21.
    Schillberg, S., Fischer, R., and Emans, N. (2003) Molecular farming of recombinant antibodies in plants. Cell. Mol. Life Sci. 60, 433–445.PubMedCrossRefGoogle Scholar
  22. 22.
    Evangelista, R. L., Kusnadi, A. R., Howard, J. A., and Nikolov, Z. L. (1998) Process and economic evaluation of the extraction and purification of recombinant β-glucuronidase from transgenic corn. Biotechnol. Prog. 14, 607–614.PubMedCrossRefGoogle Scholar
  23. 23.
    Fulton, S. P. (1994) Large-scale processing of macromolecules. Curr. Opin. Biotechnol. 5, 201–205.PubMedCrossRefGoogle Scholar
  24. 24.
    Ford, C. F., Suominen, I., and Glatz, C. E. (1991) Fusion tails for the recovery and purification of recombinant proteins. Protein Expr. Purif. 2, 95–107.PubMedCrossRefGoogle Scholar
  25. 25.
    Nygren, P. A., Stahl, S., and Uhlen, M. (1994) Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12, 184–188.PubMedCrossRefGoogle Scholar
  26. 26.
    Christou, P., Ford, T., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically-important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9, 957–962.CrossRefGoogle Scholar
  27. 27.
    Altpeter, F., Vasil, V., Srivastava, V., Stoger, E., and Vasil, I. K. (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16, 12–17.CrossRefGoogle Scholar
  28. 28.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  29. 29.
    Potrykus, I., Harms, C. T., and Lorz, H. (1979) Callus formation from cell culture protoplasts of corn (Zea mays L.). Theor. Appl. Genet. 54, 209–214.CrossRefGoogle Scholar
  30. 30.
    Horsch, R. B., Fry, J. E., Hoffman, N. L., Eicholtz, D., Rogers, S. G., and Fraley, R. T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  31. 31.
    Voss, A., Niersbach, M., Hain, R., Hirsch, H. J., Liao, Y. C., Kreuzaler, F., et al. (1995) Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breed. 1, 39–50.CrossRefGoogle Scholar
  32. 32.
    Sudhakar, D., Duc, L. T., Bong, B. B., Tinjuangjun, P., Maqbool, S. B., Valdez, M., et al. (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device Transgenic Res. 7, 289–294.CrossRefGoogle Scholar
  33. 33.
    Valdez, M., Cabera-Ponce, J. L., Sudhakar, D., Herrera-Estrella, L., and Christou, P. (1998) Transgenic Central American, West African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Ann. Bot. 82, 795–801.CrossRefGoogle Scholar
  34. 34.
    Fischer, R. and Emans, N. (2000) Molecular farming of pharmaceutical proteins. Transgenic Res. 9, 279–299.PubMedCrossRefGoogle Scholar
  35. 35.
    Schillberg, S., Emans, N., and Fischer, R. (2002) Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1, 45–54.CrossRefGoogle Scholar
  36. 36.
    Fu, X., Duc, L. T., Fontana, S., Bong, B. B., Tinjuangjun, P., Sudhakar, D., et al. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9, 11–19.PubMedCrossRefGoogle Scholar
  37. 37.
    Christou, P. and Swain, W. F. (1990) Cotransformation frequencies of foreign genes in soybean cell cultures. Theor. Appl. Genet. 90, 97–104.Google Scholar
  38. 38.
    Twyman, R. M. and Christou, P. Plant transformation technology—particle bombardment, in Handbook of Plant Biotechnology (Christou, P., ed.), John Wiley & Sons, NY (in press).Google Scholar
  39. 39.
    Twyman, R. M., Stoger, E., Kohli, A., and Christou, P. (2002) Foreign DNA: integration and expression in transgenic plants, in Genetic Engineering: Principles and Practice, Volume 24 (Setlow, J. K., ed.), Plenum Press, NY.Google Scholar
  40. 40.
    Vain, P., McMullen, M. D., and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Eva Stoger
    • 1
  • Stefan Schillberg
    • 2
  • Richard M. Twyman
    • 3
  • Rainer Fischer
    • 1
    • 2
  • Paul Christou
    • 2
  1. 1.Institute for Molecular BiologyRWTH AachenAachenGermany
  2. 2.Fraunhofer Institute for Molecular Biology and Applied EcologyIMESchmallenbergGermany
  3. 3.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations