Blood-Brain Barrier Permeability Using Tracers and Immunohistochemistry

  • Sukriti Nag
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 89)


The first report of blood-brain barrier (BBB) permeability by Paul Ehrlich (1) involved the use of the exogenous tracer Coerulean-S as described in  Chapter 6. Over the years, tracers of different sizes were introduced to study the permeability properties of normal cerebral vessels in physiologic and pathologic states (Table 1). Tracers provide information about the permeability status of vessels immediately before sacrifice. The disadvantage of exogenous tracers is that there are side effects associated with the administration of some tracers in live animals. The properties and methods by which some of these tracers are used to study BBB permeability to proteins and ions in pathologic states will be described.
Table 1

The Exogenous Tracers Used to Detect Blood-Brain Barrier Permeability and the Methods to Detect Endogenous Protein Extravasations

I. Exogenous Tracers

1. Markers of Protein Permeability

Dyes: Evans blue

Fluorescent Tracers:

Fluorescein isothiocynate-dextran (MW: 62,000)

Fluorescein isothiocynate-albumin (MW: 67,000)

Horseradish peroxidase* (MW: 40,000)

Microperoxidase* (MW: 1900)

Radiolabeled Compounds

125Idine-labeled serum albumin

14C-labeled dextran (MW: 70,000)

2. Markers of Solute and Ion Permeability

Ionic Lanthanum* (MW: 138.9)

Sodium Fluorescein (MW: 376)

Lucifer Yellow (MW: 457)

Ruthenium Red* (MW: 800)

Fluorescein isothiocynate-dextran (MW: 3000)

Radio-labeled Compounds

14C-α -Aminoisobutyric acid (MW 103)

14C Sucrose (MW: 342)

14C- Methotrexate (MW: 455)

14C-Inulin (MW: 5000)

II.Endogenous Protein Extravasation

Detected of Plasma Proteins by Immunohistochemistry



Immunogold technique

The molecular weights of the tracers are expressed in Daltons.

*Exogenous tracers detectable with EM.


Evans Blue Lanthanum Chloride Ionic Lanthanum Acute Hypertension Polyethylene Cannula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ehrlich, P. (1885) Das Sauerstoff-Bedürfnis des Organismus: Eine farbenanalytiche Studie. Hirschwald, Berlin, 8, p. 167.Google Scholar
  2. 2.
    Nag, S. (1996) Immunohistochemical localization of extracellular matrix proteins in cerebral vessels in chronic hypertension. J. Neuropathol. Exp. Neurol. 55, 381–388.PubMedCrossRefGoogle Scholar
  3. 3.
    Nag, S. (1996) Cold injury of the cerebral cortex: immunolocalization of cellular proteins and blood-brain barrier permeability studies. J. Neuropathol. Exp. Neurol. 55, 880–888.PubMedGoogle Scholar
  4. 4.
    Dallasta, L. M., Pisarov, L. A., Esplen, J. E., et al. (1999) Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Amer. J. Pathol. 155, 1915–1927.CrossRefGoogle Scholar
  5. 5.
    Plumb, J., McQuaid, S., Mirakhur, M., and Kirk, J. (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 12, 154–169.PubMedCrossRefGoogle Scholar
  6. 6.
    Nag, S., Eskandarian, M. R., Davis, J., and Stewart, D. J. (2002) Differential expression of vascular endothelial growth factor A and B after brain injury. J. Neuropathol. Exp. Neurol. 61, 778–788.PubMedGoogle Scholar
  7. 7.
    Goldmann, E. E. (1913) Vitalfarbung am Zentralnervensystem. G. Reimer, Berlin.Google Scholar
  8. 8.
    Tschirgi, R. D. (1950) Protein complexes and the impermeability of the blood-brain barrier to dyes. Am. J. Physiol. 163, 756.Google Scholar
  9. 9.
    Wolman, M., Klatzo, I., Chui, E., et al. (1981) Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol. (Berl.) 54, 55–61.CrossRefGoogle Scholar
  10. 10.
    Nag, S. (1991) Protective effect of flunarizine on blood-brain barrier permeability alterations in acutely hypertensive rats. Stroke 22, 1265–1269.PubMedGoogle Scholar
  11. 11.
    Straus, W. (1957) Segregation of an intravenously injected protein by “droplets” of the cells of rat kidney. J. Biophys. Biochem. Cytol. 3, 1037–1040.PubMedCrossRefGoogle Scholar
  12. 12.
    Graham, R. C. Jr., and Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302.PubMedGoogle Scholar
  13. 13.
    Reese, T. S., and Karnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 34, 207–217.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotran, R. S., Karnovsky, M. J. and Goth, A. (1968) Resistance of Wistar/Furth rats to mast cell-damaging effect of horseradish peroxidase. J. Histochem. Cytochem. 16, 382–383.PubMedGoogle Scholar
  15. 15.
    Deimann, W., Taugner, R., and Fahimi, H. D. (1976) Arterial hypotension induced by horseradish peroxidase in various rat strains. J. Histochem. Cytochem. 24, 1213–1217.PubMedGoogle Scholar
  16. 16.
    Sjaastad, Ø. V., Blom, A. K., and Haye, R. (1984) Hypotensive effects in cats caused by horseradish peroxidase mediated by metabolites of arachidonic acid. J. Histochem. Cytochem. 32, 1328–1330.PubMedGoogle Scholar
  17. 17.
    Nag, S., Robertson, D. M., and Dinsdale, H. B. (1979) Quantitative estimate of pinocytosis in experimental acute hypertension. Acta Neuropathol (Berl.) 46, 107–116.CrossRefGoogle Scholar
  18. 18.
    Westergaard E., and Brightman, M. W. (1973) Transport of proteins across normal cerebral arterioles. J. Comp. Neurol. 152, 17–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Nag, S. (1991) Effect of atrial natriuretic factor on permeability of the blood-cerebrospinal fluid barrier. Acta Neuropathol. (Berl.) 82, 82–274.CrossRefGoogle Scholar
  20. 20.
    Nag, S. (1995) Role of endothelial cytoskeleton in blood-brain barrier permeability to protein. Acta Neuropathol. (Berl.) 90, 454–460.CrossRefGoogle Scholar
  21. 21.
    Nag, S. (1998) Blood-brain barrier permeability measured with histochemistry. In Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology. Pardridge, W. M., ed. Cambridge University Press, Cambridge, UK, pp. 113–121.CrossRefGoogle Scholar
  22. 22.
    Stewart, P. A. (2000) Endothelial vesicles in the blood-brain barrier: are they related to permeability? Cell. Mol. Neurobiol. 20, 149–163.PubMedCrossRefGoogle Scholar
  23. 23.
    Raymond, J. J., Robertson, D. M., Dinsdale, H. B., Nag, S. (1884) Pharmacological modification of blood-brain barrier permeability following a cold lesion. Can. J. Neurol. Sci. 11, 447–451.Google Scholar
  24. 24.
    Reese T. S., Feder N., and Brightman, M. W. (1971) Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J. Neuropathol. Exp. Neurol. 30, 137–138.PubMedGoogle Scholar
  25. 25.
    Nag, S. (1988) Calcium-activated adenosine-triphosphatase in intracerebral arterioles in acute hypertension. Acta Neuropathol. (Berl.) 75, 547–553.CrossRefGoogle Scholar
  26. 26.
    Nag, S. (1990) Ultrastructural localization of Na+, K+-ATPase in cerebral endothelium in acute hypertension. Acta Neuropathol. (Berl.) 80, 7–11.CrossRefGoogle Scholar
  27. 27.
    Harik, S. I., McGunigal, T. Jr. (1984) The protective influence of the locus ceruleus on the blood-brain barrier. Ann. Neurol. 15, 568–574.PubMedCrossRefGoogle Scholar
  28. 28.
    Dorovini-Zis, K., Sato, M., Goping, G., Rapoport, S., and Brightman, M. (1983) Ionic lanthanum passage across cerebral endothelium exposed to hyperosmotic arabinose. Acta Neuropathol. (Berl.) 60, 49–60.CrossRefGoogle Scholar
  29. 29.
    Nag, S., and Pang, S. C. (1989) Effect of atrial natriuretic factor on blood-brain barrier permeability. Can. J. Physiol. Pharmacol. 67, 637–640.PubMedGoogle Scholar
  30. 30.
    Bouldin, T. W., and Krigman, M. R. (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ions. Brain Res. 99, 444–448.PubMedCrossRefGoogle Scholar
  31. 31.
    Castel, M., Sahar, A., and Erlij, D. (1974) The movement of lanthanum across diffusion barriers in the choroid plexus of the cat. Brain Res. 67, 178–184.PubMedCrossRefGoogle Scholar
  32. 32.
    Bolton, S. J., Anthony, D. C., and Perry, V. H. (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86, 1245–1257.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Sukriti Nag
    • 1
    • 2
  1. 1.Division of NeuropathologyUniversity of TorontoTorontoCanada
  2. 2.Toronto Western Research InstituteUniversity Health NetworkTorontoCanada

Personalised recommendations