Advertisement

Colorimetric Assays for Screening Laccases

  • Miguel Alcalde
  • Thomas Bulter
Part of the Methods in Molecular Biology™ book series (MIMB, volume 230)

Abstract

In this chapter, we describe colorimetric methods for screening laccases using natural and nonnatural substrates. Laccases (EC 1.10.3.1) are blue-copper enzymes that oxidize phenols, polyphenols, and anilines (1,2). The catalytic capabilities of laccase can be greatly enhanced by the addition of suitable mediator compounds. In the presence of some of its primary substrates (such as 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid [ABTS] or 1-hydroxy-benzothiazole [HBT], laccase can catalyze the oxidation of nonnatural substrates, including polycyclic aromatic hydrocarbons (PAHs), a class of highly toxic organic pollutants widely distributed in terrestrial and aquatic environments (3, 4, 5, 6, 7). The mechanism of oxidation by laccase-mediator systems (LMS) is still under discussion. In spite of enhancing the range of compounds amenable to oxidation by laccases, mediators have several disadvantages: they are expensive, poisonous, and show side reactions with substrates and products, leading to reduced yield and impurity of the products. Inactivation of laccase by free radicals of the mediators is an additional drawback (8,9). To optimize laccases for mediated applications or make them independent of mediators using directed evolution requires mediator-dependent screens.

Keywords

Laccase Activity Directed Evolution Trametes Versicolor Nonnatural Substrate Endpoint Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arnold, F. H. and Volkov, A. A. (1999) Directed evolution of biocatalysts. Curr. Opin. Biotech. 3, 54–59.CrossRefGoogle Scholar
  2. 2.
    Gianfreda, L., Xu, F., and Bollag, J. M. (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 3, 1–25.CrossRefGoogle Scholar
  3. 3.
    Collins, P. J., Kotterman, M. J. J., Field, J. A., and Dobson, A. D. W. (1996) Oxidation of antrhacene and benzo[a]pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol. 62, 4563–4567.PubMedGoogle Scholar
  4. 4.
    Johannes, C., Majcherczyk, A., and Huttermann, A. (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol. 46, 313–317.PubMedCrossRefGoogle Scholar
  5. 5.
    Majecherczyk, A., Johannes, C., and Huttermann, A. (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Tech. 22, 335–341.CrossRefGoogle Scholar
  6. 6.
    Johannes, C., Majcherczyk, A., and Huttermann, A. (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotech. 61, 151–156.CrossRefGoogle Scholar
  7. 7.
    Pickard, M. A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65, 3805–3809.PubMedGoogle Scholar
  8. 8.
    Johannes, C. and Majcherczyk, A. (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524–528.PubMedCrossRefGoogle Scholar
  9. 9.
    Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., and Borneman, S. (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63, 4627–4632.PubMedGoogle Scholar
  10. 10.
    Childs, R. E. and Bardsley, W. G. (1975) The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 145, 93–103.PubMedGoogle Scholar
  11. 11.
    Alcalde, M., Bulter, T., and Arnold, F. H. (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J. Biom. Screen 6, 537–543.Google Scholar
  12. 12.
    Field, J. A., de Jong, E., Feijoo-Costa, G., and de Bont, J. M. (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58, 2219–2226.PubMedGoogle Scholar
  13. 13.
    Field, J. A., de Jong, E., Feijoo-Costa, G., and de Bont, J. M. (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Tibtech 11, 44–49.Google Scholar
  14. 14.
    Kotterman, M. J. J., Heessels, E., de Jong, E., and Field, J. A. (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appl. Microbiol. Biotechnol. 42, 179–186.CrossRefGoogle Scholar
  15. 15.
    Xu, F. (1996) Catalysis of novel enzymatic iodide oxidation by fungal laccase. Appl. Biochem. Biotech. 59, 221–230.CrossRefGoogle Scholar
  16. 16.
    Fieser, L. F. and Fieser, M. (Eds.) (1967) Reagents for Organic Synthesis. J. Wiley & Sons, New York, NY.Google Scholar
  17. 17.
    Holm, K. A., Nielsen, D. M., and Eriksen, J. (1998) Automated colorimetric determination of recombinant fungal laccase activity in fermentation samples using syringaldazine as chromogenic substrate. J. Autom. Chem. 20, 199–203.Google Scholar
  18. 18.
    Glenn, J. K. and Gold, M. H. (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45, 1741–1747.PubMedGoogle Scholar
  19. 19.
    Gold, M. H., Glenn, J. K., and Alic, M. (1988) Use of polymeric dyes in lignin biodegradation assays. Meth. Enzymol. 161, 74–78.CrossRefGoogle Scholar
  20. 20.
    Ramette, R. W. and Sandford, R. W. (1965) Thermodynamics of iodine solubility and triiodide formation in water and in deuterium oxide. J. Am. Chem. Soc. 87, 5001–5005.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Miguel Alcalde
    • 1
  • Thomas Bulter
    • 2
  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadena
  2. 2.Department of Chemical EngineeringUniversity of California at Los AngelesLos Angeles

Personalised recommendations