E. coli pp 91-98 | Cite as

Cellular Microbiology of STEC Infections

An Overview
  • Frank Ebel
  • Dana Philpott
Protocol
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 73)

Abstract

Cellular microbiology defines an emerging discipline that brings together the study of pathogenic microbes with eurkaryotic cell biology in order to investigate in detail the complex interactions that occur between pathogen and host during the process of disease. Over the years, we have seen the study of “cellular microbiology” move from research that was largely observational to, more recently, where microbes have become powerful tools to probe the complex molecular workings of the eukaryotic host cell (1). Examination of molecular mechanisms that characterize the interplay between bacteria and host cell has led to a new appreciation of microbial pathogenesis. A recurring theme that has emerged is that microorganisms have developed sophisticated mechanisms to subvert host cell signaling pathways in order to create a favorable environment for their own survival.

References

  1. 1.
    Cossart P., Boquet P., Normark S., and Rappuoli R. (1996) Cellular microbiology emerging. Science 271, 315–316.CrossRefPubMedGoogle Scholar
  2. 2.
    Endo Y., Tsurugi K., Yutsudo T., Takeda Y., Ogasawara T., and Igarashi K. (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171, 45–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt H. and Karch H. (1996) Enterohemolytic phenotypes and genotypes of shiga toxin-producing Escherichia coli O111 strains from patients with diarrhea and hemolytic-uremic syndrome. J. Clin. Microbiol. 34, 2364–2367.PubMedGoogle Scholar
  4. 4.
    Schmidt H., Maier E., Karch H., and Benz R. (1996) Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Eur. J. Biochem. 241, 594–601.CrossRefPubMedGoogle Scholar
  5. 5.
    Brunder W., Schmidt H., and Karch H. (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24, 767–778.CrossRefPubMedGoogle Scholar
  6. 6.
    Djafari S., Ebel F., Deibel C., Krämer S., Hudel M., and Chakraborty T. (1997) Characterization of an exported protease from Shiga toxin-producing Escherichia coli. Mol. Microbiol. 25, 771–784.CrossRefPubMedGoogle Scholar
  7. 7.
    Burland V., Shao Y., Perna N.T., Plunkett G., Sofia H.J., Blattner F.R. (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26, 4196–4204.CrossRefPubMedGoogle Scholar
  8. 8.
    Brunder W., Schmidt H., and Karch H. (1996) KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142, 3305–3315.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt H., Henkel B., and Karch H. (1997) A gene cluster closely related to type II secretion pathway operons of gram-negative bacteria is located on the large plasmid of enterohemorrhagic Escherichia coli O157 strains. FEMS Microbiol. Lett. 148, 265–272.CrossRefPubMedGoogle Scholar
  10. 10.
    Frankel G., Phillips A. D., Rosenshine I., Dougan G., Kaper J. B., and Knutton S. (1998) Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911–921.CrossRefPubMedGoogle Scholar
  11. 11.
    Perna N. T., Mayhew G. F., Posfai G., Elliott S., Donnenberg M. S., Kaper J.B., et al. (1998) Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66, 3810–3817.PubMedGoogle Scholar
  12. 12.
    Cornelis G. R. and Van Gijsegem F. (2000) Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54, 735–774.CrossRefPubMedGoogle Scholar
  13. 13.
    Moon H. W., Whipp S. C., Argenzio R. A., Levine M. M., Giannella R. A. (1983) Attacking and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41, 1340–1351.PubMedGoogle Scholar
  14. 14.
    Ebel F., Podzadel T., Rohde M., Kresse A. U., Krämer S., Deibel C., et al. (1998) Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol. Microbiol. 30, 147–161.CrossRefPubMedGoogle Scholar
  15. 15.
    Goosney D. L., Celli J., Kenny B., and Finlay B. B. (1999) Enteropathogenic Escherichia coli inhibits phagocytosis. Infect. Immun. 67, 490–495.PubMedGoogle Scholar
  16. 16.
    Celli J., Olivier M., and Finlay B. B. (2001) Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258.CrossRefPubMedGoogle Scholar
  17. 17.
    Elliott S. J., Yu J., and Kaper J. B. (1999) The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect. Immun. 67, 4260–4263.PubMedGoogle Scholar
  18. 18.
    Elliott S. J., Sperandio V., Giron J. A., Shin S., Mellies J. L., Wainwright L., et al. (2000) The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE-and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68, 6115–6126.CrossRefPubMedGoogle Scholar
  19. 19.
    Knutton S., Rosenshine I., Pallen M. J., Nisan I., Neves B. C., Bain C., et al. (1998) A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176.CrossRefPubMedGoogle Scholar
  20. 20.
    Sekiya K., Ohishi M., Ogino T., Tamano K., Sasakawa C., and Abe A. (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 11,638–11,643.CrossRefPubMedGoogle Scholar
  21. 21.
    Kresse A. U., Rohde M., and Guzman C. A. (1999) The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infect. Immun. 67, 4834–4842.PubMedGoogle Scholar
  22. 22.
    Wachter C., Beinke C., Mattes M., and Schmidt M. A. (1999) Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 31, 1695–1707.CrossRefPubMedGoogle Scholar
  23. 23.
    Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., and Schmidt M.A. (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 669–679.CrossRefPubMedGoogle Scholar
  24. 24.
    Wolff C., Nisan I., Hanski E., Frankel G., and Rosenshine I. (1998) Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 28, 143–155.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosenshine I., Ruschkowski S., Stein M., Reinscheid D. J., Mills S. D., and Finlay B. B. (1996) A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624.PubMedGoogle Scholar
  26. 26.
    Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., and Finlay B. B. (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.CrossRefPubMedGoogle Scholar
  27. 27.
    Gruenheid S., DeVinney R., Bladt F., Goosney D., Gelkop S., Gish G.D., et al. (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell. Biol. 3, 856–859.CrossRefPubMedGoogle Scholar
  28. 28.
    Ismaili A., McWhirter E., Handelsman M. Y., Brunton J. L., and Sherman P. M. (1998) Divergent signal transduction responses to infection with attaching and effacing Escherichia coli. Infect. Immun. 66, 1688–1696.PubMedGoogle Scholar
  29. 29.
    Deibel C., Krämer S., Chakraborty T., and Ebel F. (1998) EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 28, 463–474.CrossRefPubMedGoogle Scholar
  30. 30.
    DeVinney R., Puente J. L., Gauthier A., Goosney D., and Finlay B. B. (2001) Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tirbased mechanism for pedestal formation. Mol. Microbiol. 41, 1445–1458.CrossRefPubMedGoogle Scholar
  31. 31.
    Goosney D. L., DeVinney R., and Finlay B. B. (2001) Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322.CrossRefPubMedGoogle Scholar
  32. 32.
    Phillips A. D., Giron J., Hicks S., Dougan G., and Frankel G. (2000) Intimin from enteropathogenic Escherichia coli mediates remodelling of the eukaryotic cell surface. Microbiology 146, 1333–1344.PubMedGoogle Scholar
  33. 33.
    McNamara B. P., Koutsouris A., O’Connell C. B., Nougayrede J. P., Donnenberg M. S., and Hecht G. (2001) Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629.CrossRefPubMedGoogle Scholar
  34. 34.
    Kenny B. and Jepson M. (2000) Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590.CrossRefPubMedGoogle Scholar
  35. 35.
    Elliott S. J., Krejany E. O., Mellies J. L., Robins-Browne R. M., Sasakawa C., and Kaper J. B. (2001) EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun. 69, 4027–4033.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Frank Ebel
    • 1
  • Dana Philpott
    • 2
  1. 1.Bakteriologie, Max-von-Pettenkofer-InstitutMunichGermany
  2. 2.Groupe dImmunit&#00E9 Inn&#00E9e et Signalisation, Institut PasteurParisFrance

Personalised recommendations