E. coli pp 45-54 | Cite as

Detection and Characterization of STEC in Stool Samples Using PCR

  • Adrienne W. Paton
  • James C. Paton
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 73)


Production of a member of the Shiga toxin (Stx) family is a sine qua non of virulence for Shiga toxigenic Escherichia coli (STEC), and therefore polymerase chain reaction (PCR) amplification of stx genes is, unquestionably, a definitive diagnostic procedure. Moreover, PCR is extremely sensitive, which is an important feature, because as STEC disease progresses from the initial diarrheal phase to the more serious complications, the numbers of STEC in the feces often diminish markedly (1,2). Rapid PCR assays also permit the timely diagnosis of index cases, which is important for the recognition and subsequent management of outbreaks. Although direct extracts of feces can be used as a template for PCR, sensitivity has often been suboptimal because of the presence of inhibitors of Taq polymerase. For this reason, it is strongly recommended that fecal samples be first cultured (even for as little as 4 h) in a suitable enrichment broth. This has the advantage of diluting any inhibitors present and increasing the number of target STEC organisms. Crude DNA extracts from such cultures can then be subjected to subsequent PCR analysis.


  1. 1.
    Karmali M.A. (1989) Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2, 15–38.PubMedGoogle Scholar
  2. 2.
    Paton J. C. and Paton A. W. (1998) Pathogenesis and diagnosis of Shiga toxinproducing Escherichia coli infections. Clin. Microbiol. Rev. 11, 450–479.PubMedGoogle Scholar
  3. 3.
    Jackson M. P., Newland J. W., Holmes R. K., and O'Brien A. D. (1987) Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb. Pathogen. 2, 147–153.CrossRefGoogle Scholar
  4. 4.
    Jackson M. P., Neill R. J., O'Brien A. D., Holmes R. K., and Newland J. W. (1987) Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli. FEMS Microbiol. Lett. 44, 109–114.CrossRefGoogle Scholar
  5. 5.
    Yu J. and Kaper J.B. (1992) Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 6, 411–417.CrossRefPubMedGoogle Scholar
  6. 6.
    Schmidt H., Beutin L., and Karch H. (1995) Molecular analysis of the plasmidencoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63, 1055–1061.PubMedGoogle Scholar
  7. 7.
    Bilge S. S., Vary J. C., Dowell S. F., and Tarr P.I. (1996) Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus. Infect. Immun. 64, 4795–4801.PubMedGoogle Scholar
  8. 8.
    Bastin D. A. and Reeves P. R. (1995) Sequence analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene 164, 17–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Paton A. W., Paton J. C., Goldwater P. N., and Manning P. A. (1993) Direct detection of Escherichia coli shiga-like toxin genes in primary fecal cultures using the polymerase chain reaction. J. Clin. Microbiol. 31, 3063–3067.PubMedGoogle Scholar
  10. 10.
    Paton A. W. and Paton J. C. (1998) Detection and characterization of Shiga toxigenic Escherichia coli using multiplex PCR assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, rfbO111 and rfbO157. J. Clin. Microbiol. 36, 598–602.PubMedGoogle Scholar
  11. 11.
    Paton A. W. and Paton J. C. (1999) Direct detection of Shiga toxigenic Escherichia coli strains belonging to serogroups O111, O157, and O113 by multiplex PCR. J. Clin. Microbiol. 37, 3362–3365.PubMedGoogle Scholar
  12. 12.
    Ostroff S. M., Tarr P. I., Neill M. A., Lewis J. H., Hargrett-Bean N., and Kobayashi J. M. (1989) Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160, 994–999.PubMedGoogle Scholar
  13. 13.
    Kleanthous H., Smith H. R., Scotland S. M., Gross R. J., Rowe B., Taylor C. M., et al. (1990) Haemolytic uraemic syndromes in the British Isles, 1985–8: association with Verocytotoxin producing Escherichia coli. Part 2: Microbiological aspects. Arch. Dis. Child. 65, 722–727.CrossRefPubMedGoogle Scholar
  14. 14.
    Barrett T. J., Kaper J. B., Jerse A. E., and Wachsmuth I. K. (1992) Virulence factors in Shiga-like toxin-producing Escherichia coli isolated from humans and cattle. J. Infect. Dis. 165, 979–980.PubMedGoogle Scholar
  15. 15.
    Schmidt H. and Karch H. (1996) Enterohemolytic phenotypes and genotypes of Shiga toxin-producing Escherichia coli O111 strains from patients with diarrhea and hemolytic-uremic syndrome. J. Clin. Microbiol. 34, 2364–2367.PubMedGoogle Scholar
  16. 16.
    Paton A. W., Woodrow M. C., Doyle R. M., Lanser J. A., and Paton J. C. (1999) Molecular characterization of a Shiga-toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J. Clin. Microbiol. 37, 3357–3361.PubMedGoogle Scholar
  17. 17.
    Karmali M. A., Petric M., Lim C., Fleming P. C., Arbus G. S., and Lior H. (1985) The asociation between hemolytic uremic syndrome and infection by Verotoxin-producing Escherichia coli. J. Infect. Dis. 151, 775–782.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Adrienne W. Paton
    • 1
  • James C. Paton
    • 1
  1. 1.Department of Molecular BiosciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations