E. coli pp 151-163 | Cite as

Detection and Characterization of EHEC-Hemolysin

  • Herbert Schmidt
  • Roland Benz
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 73)


The ability of particular Escherichia coli strains to lyse erythrocytes of several mammalian species was first described by Kayser in 1903 (1). This phenomenon was termed hemolysis and the bacterial determinants involved were termed hemolysins. The best characterized E. coli hemolysin is α-hemolysin, which is mainly produced by uropathogenic E. coli (UPEC). When blood agar plates are inoculated with α-hemolysin-producing bacteria, large clear zones of hemolysis are observed that occurred after 4–6 h of incubation at 37°C (2). This chapter aims to describe three protocols useful for studying the hemolysin of enterohemorrhagic E. coli (EHEC): detection of the toxin, measurement of hemolytic activity, and, finally, determination of the pore-forming activity of the toxin. EHEC are a subgroup of Shiga toxin-producing E. coli (STEC, and are associated with severe human disease. It should be noted here that the enterohemolytic phenotype is not a characteristic property of all EHEC/STEC. Whereas almost all EHEC O157:H7 are enterohemolytic, the sorbitol-fermenting E. coli O157:H- are nonhemolytic. EHEC O111 differs in their capacity to produce E-Hly and EHEC O103:H2 overproduces E-Hly so that an α-hemolysin-like phenotype occurs on blood agar plates (3,4). In STEC, strains isolated from a variety of human and nonhuman sources also differ in their ability to produce EHEC-hemolysins.


  1. 1.
    Kayser H. (1903) Über Bakterienhämolysine, im Besonderen das Colilysin. Z. Hyg. Infektionskr. 42, 118–138.CrossRefGoogle Scholar
  2. 2.
    Beutin L. (1991) The different hemolysins of Escherichia coli. Med. Microbiol Immunol. Berl. 180, 167–182.PubMedGoogle Scholar
  3. 3.
    Schmidt H., Geitz C., Tarr P. I., Frosch M., and Karch H. (1999) Non-O157:H7 pathogenic Shiga toxin-producing Escherichia coli: phenotypic and genetic profiling of virulence traits and evidence for clonality. J. Infect. Dis. 179, 115–123.CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt H. and Karch H. (1996) Enterohemolytic phenotypes and genotypes of Shiga toxin-producing Escherichia coli O111 strains from patients with diarrhea and hemolytic-uremic syndrome. J. Clin. Microbiol. 34, 2364–2367.PubMedGoogle Scholar
  5. 5.
    Beutin L., Montenegro M., Zimmermann S., and Stephan R. (1986) Characterization of hemolytic strains of Escherichia coli belonging to classical enteropathogenic O-serogroups. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 261, 266–279.Google Scholar
  6. 6.
    Beutin L., Montenegro M.A., Orskov I., Orskov F., Prada J., Zimmermann S., et al. (1989) Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 27, 2559–2564.PubMedGoogle Scholar
  7. 7.
    Schmidt H., Karch H., and Beutin L. (1994) The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol. Lett. 117, 189–196.PubMedGoogle Scholar
  8. 8.
    Schmidt H., Kernbach C., and Karch H. (1996) Analysis of the EHEC hly operon and its location in the physical map of the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142, 907–914.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt H., Beutin L., and Karch H. (1995) Molecular analysis of the plasmidencoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63, 1055–1061.PubMedGoogle Scholar
  10. 10.
    Schmidt H., Maier E., Karch H., and Benz R. (1996) Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Eur. J. Biochem. 241, 594–601.CrossRefPubMedGoogle Scholar
  11. 11.
    Lally E. T., Hill R. B., Kieba I. R., and Korostoff J. (1999) The interaction between RTX toxins and target cells. Trends Microbiol. 7, 356–361.CrossRefPubMedGoogle Scholar
  12. 12.
    Bauer M. E. and Welch R. A. (1996) Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 64, 167–175.PubMedGoogle Scholar
  13. 13.
    Mueller R., Rudin D. O., Tien H. T., and Wescott W. C. (1962) Reconstitution of excitable membrane structure in vivo and its transformation into an excitable system. Nature 194, 979–981.CrossRefPubMedGoogle Scholar
  14. 14.
    Dilger J. P. and Benz R. (1985) Optical and electrical properties of thin monoolein membranes. J. Membr. Biol. 85, 181–189.CrossRefPubMedGoogle Scholar
  15. 15.
    Benz R., Schmid A., Wagner W., and Goebel W. (1989) Pore formation by the haemolysin of Escherichia coli: evidence for an association-dissociation equilibrium of the pore-forming oligomers. Infect. Immun. 57, 887–895.PubMedGoogle Scholar
  16. 16.
    Renkin E. M. (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243.PubMedGoogle Scholar
  17. 17.
    Bhakdi S., Mackmann N., Nicaud J. M., and Holland I. B. (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect. Immun. 52, 63–69.PubMedGoogle Scholar
  18. 18.
    Benz R., Janko K., and Läuger P. (1979) Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta 551, 238–247.PubMedGoogle Scholar
  19. 19.
    Ludwig A., Benz R., and Goebel W. (1993) Oligomerization of Escherichia coli haemolysin (HlyA) is involved in pore formation. Mol. Gen. 241, 89–96.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Herbert Schmidt
    • 1
  • Roland Benz
    • 2
  1. 1.Institut f&#00FC;r Medizinische Mikrobiologie und HygieneMedizinische Fakult&#00E4t Carl Gustav Carus, Technische Universit&#00E4t DresdenDresdenGermany
  2. 2.Lehrstuhl f&#00FC;r Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universit&#00E4t W&#00FC;rzburgW&#00FC;rzburgGermany

Personalised recommendations