Development and Optimization of Adeno-Associated Virus Vector Transfer into the Central Nervous System

  • Matthew J. During
  • Deborah Young
  • Kristin Baer
  • Patricia Lawlor
  • Matthias Klugmann
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 76)

Abstract

The postgenomic era has been ushered in making promises for cures and functional analysis of previously unknown or uncharacterized genes. However, realization of the potential of gene therapy for neurological disorders and functional genomic analysis in the brain remains a significant challenge and is largely limited by current technology. Efficient gene transfer to neurons remains a bottleneck for widespread molecular genetic studies of the nervous system, and has also limited the effective translation of gene therapy for various human neurological disorders, which currently have inadequate or no treatment [reviewed in refs. 1 and 2].

References

  1. 1.
    Costantini, L. C., Bakowska, J. C., Breakefield, X. O., and Isacson, O. (2000) Gene therapy in the CNS. Gene Ther. 7, 93–109.PubMedCrossRefGoogle Scholar
  2. 2.
    Monahan, P. E. and Samulski, R. J. (2000) AAV vectors: is clinical success on the horizon? Gene Ther. 7, 24–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartlett, J. S. and Samulski, R. J. (1995) Genetics and biology of adeno-associated virus, in Viral Vectors: Gene Therapy and Neuroscience Applications (Kaplitt, M. G. and Loewy, A. D., eds.), Academic, San Diego, CA, pp. 55–73.Google Scholar
  4. 4.
    Cukor, G., Blacklow, N. R., Hoggan, D., and Berns, K. I. (1984) Biology of adeno-associated virus, in The Parvoviruses (Berns, K. I., ed.), Plenum, New York, pp. 33–66.Google Scholar
  5. 5.
    Samulski, R. J. (1993) Adeno-associated virus: integration at a specific chromosomal locus. Curr. Opin. Genet. Dev. 3, 74–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Muzyczka, N. (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129.PubMedGoogle Scholar
  7. 7.
    Berns, K. I. and Adler, S. (1972) Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. J. Virol. 9, 394–396.PubMedGoogle Scholar
  8. 8.
    Berns, K. I. and Rose, J. A. (1970) Evidence for a single-stranded adenovirusassociated virus genome: isolation and separation of complementary single strands. J. Virol. 5, 693–699.PubMedGoogle Scholar
  9. 9.
    Samulski, R. J., Chang, L. S., and Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101.PubMedGoogle Scholar
  10. 10.
    Casto, B. C., Atchison, R. W., and Hammon, W. M. (1967) Studies on the relationship between adeno-associated virus type I (AAV-1) and adenoviruses. I. Replication of AAV-1 in certain cell cultures and its effect on helper adenovirus. Virology 32, 52–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Atchison, R. W. (1970) The role of herpesviruses in adenovirus-associated virus replication in vitro. Virology 42, 155–162.PubMedCrossRefGoogle Scholar
  12. 12.
    Richardson, W. D. and Westphal, H. (1984) Requirement for either early region 1a or early region 1b adenovirus gene products in the helper effect for adenoassociated virus. J. Virol. 51, 404–410.PubMedGoogle Scholar
  13. 13.
    Kotin, R. M., Siniscalco, M., Samulski, R. J., Zhu, X. D., Hunter, L., Laughlin, C. A., et al. (1990) Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87, 2211–2215.PubMedCrossRefGoogle Scholar
  14. 14.
    Weitzman, M. D., Kyostio, S. R., Kotin, R. M., and Owens, R. A. (1994) Adenoassociated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl. Acad. Sci. USA 91, 5808–5812.PubMedCrossRefGoogle Scholar
  15. 15.
    Hermonat, P. L. and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 81, 6466–6470.PubMedCrossRefGoogle Scholar
  16. 16.
    McLaughlin, S. K., Collis, P., Hermonat, P. L., and Muzyczka, N. (1988). Adeno-associated virus general transduction vectors: analysis of proviral structures. J. Virol. 62, 1963–1973.PubMedGoogle Scholar
  17. 17.
    Samulski, R. J., Chang, L. S., and Shenk, T. (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3822–3828.PubMedGoogle Scholar
  18. 18.
    Walsh, C. E., Liu, J. M., Xiao, X., Young, N. S., Nienhuis, A. W., and Samulski, R. J. (1992) Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 89, 7257–7261.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., O’Malley, K. L., et al. (1994) Long-term gene expression and phenotypic correction using adenoassociated virus vectors in the mammalian brain. Nat. Genet. 8, 148–154.PubMedCrossRefGoogle Scholar
  20. 20.
    McCown, T. J., Xiao, X., Li, J., Breese, G. R., and Samulski, R. J. (1996) Differential and persistent expression patterns of CNS gene transfer by an adenoassociated virus (AAV) vector. Brain Res. 713, 99–107.PubMedCrossRefGoogle Scholar
  21. 21.
    Mandel, R. J., Rendahl, K. G., Spratt, S. K., Snyder, R. O., Cohen, L. K., and Leff, S. E. (1998) Characterization of intrastriatal recombinant adenoassociated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J. Neurosci. 18, 4271–4284.PubMedGoogle Scholar
  22. 22.
    Xu, R., Janson, C. J., Mastakov, M. Y., Lawlor, P., Young, D., Mouravlev, A., et al. (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther. 8,1323–1332.PubMedCrossRefGoogle Scholar
  23. 23.
    Bartlett, J. S., Samulski, R. J., and McCown, T. J. (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum. Gene Ther. 9, 1181–1186.PubMedCrossRefGoogle Scholar
  24. 24.
    Klein, R. L., Meyer, E. M., Peel, A. L., Zolotukhin, S., Meyers, C., Muzyczka, N., et al. (1998) Neuron-specific transduction in the rat septohippocampal or nigros-triatal pathway by recombinant adeno-associated virus vectors. Exp. Neurol. 150, 183–194.PubMedCrossRefGoogle Scholar
  25. 25.
    Alexander, I. E., Russell, D. W., Spence, A. M., and Miller, A. D. (1996) Effects of gamma irradiation on the transduction of dividing and nondividing cells in brain and muscle of rats by adeno-associated virus vectors. Hum. Gene Ther. 7, 841–850.PubMedCrossRefGoogle Scholar
  26. 26.
    Peel, A. L., Zolotukhin, S., Schrimsher, G. W., Muzyczka, N., and Reier, P. J. (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 4, 16–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiao, X., Li, J., McCown, T. J., and Samulski, R. J. (1997) Gene transfer by adeno-associated virus vectors into the central nervous system. Exp. Neurol. 144, 113–124.PubMedCrossRefGoogle Scholar
  28. 28.
    Donello, J. E., Loeb, J. E., and Hope, T. J. (1998) Woodchuck hepatitis virus con-tains a tripartite posttranscriptional regulatory element. J. Virol. 72, 5085–5092.PubMedGoogle Scholar
  29. 29.
    Miyazaki, J., Takaki, S., Araki, K., Tashiro, F., Tominaga, A., Takatsu, K., and Yamamura, K. (1989) Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79, 269–277.PubMedCrossRefGoogle Scholar
  30. 30.
    Klein, R. L., King, M. A., Muzyczka, N., and Meyer, E. M. (1999) AAV vectors for the gene therapy and modeling of neurodegenerative disease. Soc. Neurosci. Abstr. 25, 909.1.Google Scholar
  31. 31.
    Klein, R. L., Meyer, E. M., Muzyczka, N., and King, M. A. (2000) Somatic transgenic models of tau and alpha-synuclein protein aggregation in specific subregions of the rodent brain. Soc. Neurosci. Abstr. 26, 572.2.Google Scholar
  32. 32.
    Haberman, R. P., McCown, T. J., and Samulski, R. J. (1998) Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther. 5, 1604–1611.PubMedCrossRefGoogle Scholar
  33. 33.
    Ye, X., Rivera, V. M., Zoltick, P., Cerasoli, F., Jr., Schnell, M. A., Gao, G., et al. (1999) Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283, 88–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Mizukami, H., Young, N. S., and Brown, K. E. (1996) Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology 217, 124–130.PubMedCrossRefGoogle Scholar
  35. 35.
    Ponnazhagan, S., Wang, X. S., Woody, M. J., Luo, F., Kang, L. Y., Nallari, M. L., et al. (1996) Differential expression in human cells from the p6 promoter of human parvovirus B19 following plasmid transfection and recombinant adeno-associated virus 2 (AAV) infection: human megakaryocytic leukaemia cells are non-permissive for AAV infection. J. Gen. Virol. 77, 1111–1122.PubMedCrossRefGoogle Scholar
  36. 36.
    Summerford, C. and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445.PubMedGoogle Scholar
  37. 37.
    Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Med. 5, 78–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Qing, K., Mah, C., Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adenoassociated virus 2 [see comments]. Nat. Med. 5, 71–77.PubMedCrossRefGoogle Scholar
  39. 39.
    During, M. J., Samulski, R. J., Elsworth, J. D., Kaplitt, M. G., Leone, P., Xiao, X., et al. (1998) In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther. 5, 820–827.PubMedCrossRefGoogle Scholar
  40. 40.
    Hsueh, Y. P., Yang, E C., Kharazia, V., Naisbitt, S., Cohen, A. R., Weinberg, R. J., et al. (1998) Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J. Cell Biol. 142, 139–151.PubMedCrossRefGoogle Scholar
  41. 41.
    Hsueh, Y. P. and Sheng, M. (1999). Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J. Neurosci. 19, 7415–7425.PubMedGoogle Scholar
  42. 42.
    Liang, Y., Annan, R. S., Carr, S. A., Popp, S., Mevissen, M., Margolis, R. K., et al. (1999) Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J. Biol. Chem. 274, 17,885–17,892.PubMedCrossRefGoogle Scholar
  43. 43.
    WuDunn, D. and Spear, P. G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58.PubMedGoogle Scholar
  44. 44.
    Wu, P., Xiao, W., Conlon, T., Hughes, J., Agbandje-McKenna, M., Ferkol, T., et al. (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol. 74, 8635–8647.PubMedCrossRefGoogle Scholar
  45. 45.
    Qiu, J., Handa, A., Kirby, M., and Brown, K. E. (2000) The interaction of heparin sulfate and adeno-associated virus 2. Virology 269, 137–147.PubMedCrossRefGoogle Scholar
  46. 46.
    Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M. T., Spring, J., Gallo, R. L., et al. (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393.PubMedCrossRefGoogle Scholar
  47. 47.
    Rabinowitz, J. E. and Samulski, R. J. (2000) Building a better vector: the manipulation of AAV virions. Virology 278, 301–308.PubMedCrossRefGoogle Scholar
  48. 48.
    Davidson, B. L., Stein, C. S., Heth, J. A., Martins, I., Kotin, R. M., Derksen, T. A., et al. (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 97, 3428–3432.PubMedCrossRefGoogle Scholar
  49. 49.
    Chiorini, J. A., Yang, L., Liu, Y., Safer, B., and Kotin, R. M. (1997) Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 71, 6823–6833.PubMedGoogle Scholar
  50. 50.
    Chiorini, J. A., Kim, F., Yang, L., and Kotin, R. M. (1999) Cloning and characterization of adeno-associated virus type 5. J. Virol. 73, 1309–1319.PubMedGoogle Scholar
  51. 51.
    Bantel-Schaal, U., Delius, H., Schmidt, R., and zur Hausen, H. (1999) Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J. Virol. 73, 939–947.PubMedGoogle Scholar
  52. 52.
    Walters, R. W., Yi, S., Keshavjee, S., Brown, K. E., Welsh, M. J., Chiorini, J. A., et al. (2001) Binding of Adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 21, 21.Google Scholar
  53. 53.
    Girod, A., Ried, M., Wobus, C., Lahm, H., Leike, K., Kleinschmidt, J., et al. (1999) Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2 [published erratum appears in Nat. Med. 1999 Dec;5(12), 1438]. Nat. Med. 5, 1052–1056.PubMedCrossRefGoogle Scholar
  54. 54.
    Rabinowitz, J. E., Xiao, W., and Samulski, R. J. (1999) Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 265, 274–2851.PubMedCrossRefGoogle Scholar
  55. 55.
    Brockstedt, D. G., Podsakoff, G. M., Fong, L., Kurtzman, G., Mueller-Ruchholtz, W., and Engleman, E. G. (1999) Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin. Immunol. 92, 67–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Lo, W. D., Qu, G., Sferra, T. J., Clark, R., Chen, R., and Johnson, P. R. (1999) Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum. Gene Ther. 10, 201–213.PubMedCrossRefGoogle Scholar
  57. 57.
    Mastakov, M. Y., Baer, K., Xu, R., Fitzsimons, H., and During, M. J. (2001) Combined Injection of rAAV with Mannitol Enhances Gene Expression in the Rat Brain. Mol. Ther. 3, 225–232.PubMedCrossRefGoogle Scholar
  58. 58.
    Chamberlin, N. L., Du, B., de Lacalle, S., and Saper, C. B. (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res. 793, 169–175.PubMedCrossRefGoogle Scholar
  59. 59.
    Bromberg, J. S., Debruyne, L. A., and Qin, L. (1998) Interactions between the immune system and gene therapy vectors: bidirectional regulation of response and expression. Adv. Immunol. 69, 353–409.PubMedCrossRefGoogle Scholar
  60. 60.
    Brooks, A. I., Halterman, M. W., Chadwick, C. A., Davidson, B. L., HaakFrendscho, M., Radel, C., et al. (1998) Reproducible and efficient murine CNS gene delivery using a microprocessor-controlled injector. J. Neurosci. Meth. 80, 137–147.CrossRefGoogle Scholar
  61. 61.
    Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adeno-associated virus vectors. Hum. Gene Ther. 9, 2745–2760.PubMedCrossRefGoogle Scholar
  62. 62.
    Clark, K. R., Liu, X., McGrath, J. P., and Johnson, P. R. (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther. 10, 1031–1039.PubMedCrossRefGoogle Scholar
  63. 63.
    Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232.PubMedGoogle Scholar
  64. 64.
    Cao, L., Liu, Y., During, M. J., and Xiao, W. (2000) High-titer, wild-type free recombinant adeno-associated virus vector production using intron-containing helper plasmids. J. Virol. 74, 11,456–11,463.PubMedCrossRefGoogle Scholar
  65. 65.
    Bartlett, J. S. and Samulski, R. J. (2000) Methods for the construction and propagation of recombinant adeno-associated virus vectors, in Methods in Molecular Medicine, Gene Therapy Protocols (Robbins, P., ed.), Humana, Totowa, NJ, pp. 25–40.Google Scholar
  66. 66.
    Mastakov, M. Y., Baer, K., Kotin, R. M., and During, M. J. (2002) Recombinant adeno-associated virus serotypes 2-and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol. Ther. 5, 371–380.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Matthew J. During
    • 1
    • 2
  • Deborah Young
    • 3
  • Kristin Baer
    • 4
  • Patricia Lawlor
    • 4
  • Matthias Klugmann
    • 4
  1. 1.CNS Gene Therapy Center, Department of NeurosurgeryJefferson Medical CollegePhiladelphia
  2. 2.Department of Molecular Medicine & Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  3. 3.Department of Pathobiology and Center for Comparative Medical Genetics, School of Veterinary MedicineUniversity of Pennsylvania and Department of Neurology and Neuroscience Research, Children’s Hospital of PhiladelphiaPhiladelphia
  4. 4.Department of Molecular Medicine & Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations