General Laboratory Methods for Tetrapyrroles

  • Jerry C. Bommer
  • Peter Hambright
Part of the Springer Protocols Handbooks book series (SPH)


There are thousands of porphyrins and metalloporphyrins, and hundreds of new derivatives appear each year. This variety arises because the cyclic conjugated tetrapyrrole nucleus (Figure 1) can have different substituents at the eight β-pyrrole positions, at the four meso [5,10,15,20] carbon atoms, and N-alkyl groups can be added to the four central nitrogen atoms. Since its synthesis in 1972, over 8000 literature references have appeared on 5,10,15, 20-tetrakis(N-methyl-4-pyridyl)porphyrin compounds, and a similar number on its precursor, 5,10,15,20-tetrakis(4-pyridyl) porphyrin and its derivatives. Most metals and metalloids in the periodic table form metalloporphyrins, and iron porphyrins have been prepared in oxidation states ranging from 0 to +5. In addition, the porphyrin ring itself can be oxidized, reduced, and cleaved.
Figure 1.

The structures of some water-soluble porphyrins and several of their precursors. Each compound is the porphyrin with the indicated substituents on the four meso (5, 10, 15 and 20) positions. H2-TPP: meso-tetraphenylporphyrin; H2-TPyP(4), meso-tetrakis(4-pyridyl)porphyrin; H2-TMPyP(X): the ortho (2), meta (3) and para (4) isomers of meso-tetrakis(N-methyl-X-pyridyl)porphyrin; H2-TPPC4, meso-tetrakis(4-carboxyphenyl)porphyrin; H2-TPPS4: meso-tetrakis(4-sulfonatophenyl)porphyrin; H2-TAPP, meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin. A fuller explanation of the nomenclature of porphyrins can be found in  Chapter 2.


Thin Layer Chromatography Plate Iron Porphyrin Cationic Porphyrin Central Nitrogen Atom Thin Layer Chromatography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adeyemo, A., Shamim, P. Hambright, and R.F.X. Williams. 1982. meso-Tetrakis[N-methyl-4(or 3)quinolyl]porphyrins: metallation rate/basicity correlations. Indian J. Chem. 21A:763–766.Google Scholar
  2. 2.
    Adeyemo, A., A. Valiotti, C. Burnham, and P. Hambright. 1981. Acid solvolysis kinetics of copper and nickel porphyrins: a rate-stability index correlation. Inorg. Chim. Acta Lett. 54:L63–L65.CrossRefGoogle Scholar
  3. 3.
    Adler, A.D., F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff. 1967. A simplified synthesis for meso-tetraphenylporphyrin. J. Org. Chem. 32:476–477.CrossRefGoogle Scholar
  4. 4.
    Adler, A.D., F.R. Longo, F. Kampas, and J. Kim. 1970. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 32:2443–2445.CrossRefGoogle Scholar
  5. 5.
    Almarsson, O., H. Adalsteinsson, and T.C. Bruice. 1995. Synthesis and characterization of an octacationic iron tetraphenylporphyrin, which is soluble in water and non-m-oxo dimer forming. J. Am. Chem. Soc. 117:4524–4532.CrossRefGoogle Scholar
  6. 6.
    Anton, J.A. and P.A. Loach. 1975. Synthesis of some mono, di and trisubstituted tetraarylporphyrins. J. Heterocyclic. Chem. 12:573–576.CrossRefGoogle Scholar
  7. 7.
    Artaud, I., H. Grennberg, and D. Mansuy. 1992. Selective oxidative cleavage of 1,2-dimethoxyarenes to muconic diesters catalyzed by an iron-sulfonated-tetrakis(pentafluorophenyl)porphyrin. J. Chem. Soc, Chem. Commun. 1036–1038.Google Scholar
  8. 8.
    Bachmann, R.C. and B.F. Burnham. 1969. Purification of porphyrin esters by gel-filtration. J. Chromatogr. 47:394–399.Google Scholar
  9. 9.
    Barnett, G.H., M.F. Hudson, and K.M. Smith. 1975. Concerning meso-substituted tetraphenylporphyrin purification. J. Chem. Soc. [Perkins 1] 1401–1403.Google Scholar
  10. 10.
    Batinic-Haberle, I., L. Benov, I. Spasojevic, and I. Fridovich. 1998. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl) porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 273:24521–24528.PubMedCrossRefGoogle Scholar
  11. 11.
    Batinic-Haberle, I., S.I. Liochev, I. Spasojevic, and I. Fridovich. 1997. A potent superoxide dismutase mimic: manganese-β-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl)porphyrin. Arch. Biochem. Biophys. 343:225–233.PubMedCrossRefGoogle Scholar
  12. 12.
    Batinic-Haberle, I., I. Spasojevic, P. Hambright, L. Benov, A.L. Crumbliss, and I. Fridovich. 1999. The relationship between redox potentials, proton dissociation constants of pyrroic nitrogens and in vivo superoxide dismutase activities of manganese(III) and iron(III) cationic and anionic porphyrins. Inorg. Chem. 38:4011–4022.CrossRefGoogle Scholar
  13. 13.
    Brisbin, D.A. and J.O. Asgill. 1974. The micro-determination of porphyrins. An intergrated laboratory experiment. J. Chem. Ed. 51:211–213.CrossRefGoogle Scholar
  14. l4.
    Buchler, J.W. 1975. Static coordination chemistry of metalloporphyrins, p. 157–231. In K.M. Smith (Ed.), Porphyrins and Metalloporphyrins, Elsevier, Amsterdam.Google Scholar
  15. 15.
    Buchler, J.W. 1979. Synthesis and properties of metalloporphyrins, p. 389–483. In D. Dolphin (Ed.), The Porphyrins, Vol. I, Part A. Academic Press, New York.Google Scholar
  16. 16.
    Buchler, J.W., F.M. Kunzel, U. Mayer, and M. Nawra. 1994. Metal complexes with tetrapyrrole ligands. Part 64. Electrophoresis of water-soluble porphyrins and their metal complexes. Fresenius J. Anal. Chem. 348:371–376.CrossRefGoogle Scholar
  17. 17.
    Buchler, J.W. and M. Nawra. 1994. Metal complexes with tetrapyrrole ligands. 67. Synthesis and spectroscopic properties of water-soluble cerium bisporphyrinate double-decker ions. Inorg. Chem. 33:2830–2837.CrossRefGoogle Scholar
  18. 18.
    Buchler, R.A. and M. Nawra. 1996. Metal complexes with tetrapyrrole ligands. 71. Heteroaggregation of cationic metal mono-and bisporphyrinates with anion metal porphyrinates or indigosulfonates. Inorg. Chim. Acta. 251:227–237.CrossRefGoogle Scholar
  19. 19.
    Byrn, M.P., C.J. Curtis, I. Goldberg, Y. Hsiou, S.J. Khan, P.A. Sawin, S.K. Tendick, and C.E. Strouse. 1991. Porphyrin sponges: structural systematics of the host lattice. J. Am. Chem. Soc. 113:3617–3621.Google Scholar
  20. 20.
    Cardinal, R.A., I. Bossenmaier, Z.J. Petryka, L. Johnson and C.J. Watson. 1968. Isolation of porphyrins from porphyria urine by preparative thin-layer chromatography. J. Chromatogr. 38:100–105.PubMedCrossRefGoogle Scholar
  21. 21.
    Caughey, W S., A. Adler, B.F. Burnham, D. Dolphin, S.F. MacDonald, D.C. Mauzerall, and Z.J. Petyka. 1972. Porphyrins, p. 185–216. In Specification and Criteria for Biochemical Compounds, 3rd ed. National Academy of Sciences, Washington, D.C.Google Scholar
  22. 22.
    Caughey, W.S., R.M. Deal, C. Weiss, and M. Gouterman. 1965. Electronic spectra of substituted metal deuteroporphyrins. J. Mol. Spectrosc. 16:451–463.CrossRefGoogle Scholar
  23. 23.
    Caughey, W.S., W.Y. Fujimoto, and B. Johnson. 1966. Substituted deuteroporphyrins. II. Substituent effects on electronic spectra, nitrogen basicities, and ligand affinities. Biochemistry 5:3830–3843.CrossRefGoogle Scholar
  24. 24.
    Cavaleiro, J.A.S., G.W. Kenner, and K.M. Smith. 1974. Pyrroles and related compounds. Part XXXII. Biosynthesis of protoporphyrin IX from coproporphyrininogen III. J. Chem. Soc. [PerkinsI]. 1188–1194.Google Scholar
  25. 25.
    Chu, T.C. and E.J.-H. Chu. 1966. Thin-layer chromatography of methyl esters of porphyrins, chlorins and related compounds with Eastman “chromagram”. J. Chromatogr. 21:46–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Collman, J.P., R.R. Gagne, C.A. Reed, T.P. Halbert, G. Lang, and W.T. Robinson. 1975. “Picket fence porphyrins.” Synthetic models for oxygen binding hemoproteins. J. Am. Chem. Soc. 97:1427–1439.PubMedCrossRefGoogle Scholar
  27. 27.
    Conant, J.B. and W.W. Mover. 1930. Studies in the chlorophyll series. III. Products of the phase test. J. Am. Chem. Soc. 52:3013–3023.CrossRefGoogle Scholar
  28. 28.
    Datta-Gupta, N. and T.J. Bardos. 1966. Synthetic porphyrins. I. Synthesis and spectra of some para-substituted meso-tetraphenylporphines. J. Heterocyclic. Chem. 3:495–502.CrossRefGoogle Scholar
  29. 29.
    DiNello, R.K. and C.K. Chang. 1978. Isolation and modification of natural porphyrins, p. 289–339. In D. Dolphin (Ed.), The Porphyrins, Vol. I, Part A. Academic Press, New York.Google Scholar
  30. 30.
    Dixon, D.W., R. Schinazi, and L.G. Marzilli. 1990. Porphyrins as agents against the human immunodeficiency virus. Ann. NY Acad. Sci. 616:511–513.CrossRefGoogle Scholar
  31. 30a.
    Dolphin, D., (Ed.). 1978. The Porphyrins, Vol. I–VII. Academic Press, New York.Google Scholar
  32. 31.
    Dolphin, D., T.G. Traylor, and L.Y. Xie. 1997. Polyhaloporphyrins: unusual ligands for metals and metal catalyzed oxidations. Acc. Chem. Res. 30:251–259.CrossRefGoogle Scholar
  33. 32.
    Drabkin, D.L. 1941. Spectrophotometric studies VIII. The microdetermination of iron in cytochrome c and hemin preparations. J. Biol. Chem. 140:387–396.Google Scholar
  34. 33.
    Elder, G. 1971. Separation of porphyrin methyl esters by two-dimensional thin layer chromatography. J. Chromatogr. 59:234–236.PubMedCrossRefGoogle Scholar
  35. 34.
    Endisch, C., J.-H. Fuhrhop, J. Buschmann, P. Luger, and U. Siggel. 1996. β-Tetraethyl-β′-tetrapyridin-4-yl porphyrins, their N-methylated tetracations, and heterodimers with ms-tetraphenylsulfonato porphyrins. J. Am. Chem. Soc. 118:6671–6680.CrossRefGoogle Scholar
  36. 35.
    Falk, J.E. 1964. Porphyrins and Metalloporphyrins. Elsevier, Amsterdam.Google Scholar
  37. 36.
    Ferrer-Sueta, G., I. Batinic-Haberle, I. Spasojevic, I. Fridovich, and R. Radi. 1999. Catalytic scavengening of peroxynitrite by isomeric Mn(III) N-methylpyridyl-porphyrins in the presence of reductants. Chem. Res. Toxicol. 12:442–449.PubMedCrossRefGoogle Scholar
  38. 37.
    Fischer, H. and R. Baumler. 1929. Uber phao und phyllerythro-porphyrine. Ann. Chem. 474:65–120.Google Scholar
  39. 38.
    Fischer, H. and H. Orth. 1934. Die Chemie des Pyrroles. Vol 1. Akademische Verlagsgellschaft, Liepzig.Google Scholar
  40. 39.
    Fischer, H. and H. Orth. 1937. Die Chemie des Pyrroles. Vol 2, part 1. Akademische Verlagsgellschaft, Liepzig.Google Scholar
  41. 40.
    Fischer, H. and H. Siebel. 1932. Uber phaeophorbide a, chorin e and chlorophyll a. Ann. Chem. 499:84–108.Google Scholar
  42. 41.
    Fischer, H. and A. Stern. 1940. Die Chemie des Pyrroles. Vol 2, part 2. Akademische Verlagsgellschaft, Liepzig.Google Scholar
  43. 42.
    Fleischer, E.B., R. Foust, D. Jeter, and R. Near. 1973. The solubilities of tetra(monofluorophenyl)porphines. Inorg. Nucl. Chem. Lett. 9:1219–1220.CrossRefGoogle Scholar
  44. 43.
    Flynn, S.M., S.T. George, L. White, W. Oevonish, and G.B. Takle. 1999. Water-soluble, meso-substituted cationic porphyrins—a family of compounds for cellular delivery of oligonucleotides. BioTechniques 26:736–740.PubMedGoogle Scholar
  45. 44.
    Fuhrhop, J.-H. and K.M. Smith. 1975. In K.M. Smith (Ed.), Porphyrins and Metalloporphyrins, Chapter 19. Elsevier, Amsterdam.Google Scholar
  46. 45.
    Gonsalves, A.M.d’A.R., R.W.A. Johnstone, M.M. Pereira, A.M.P. de SantAna, A.C. Serra, A.J.F.N. Sorbal, and P.A. Stocks. 1996. New procedures for the synthesis and analysis of 5,10,15,20-tetrakis(sulfophenyl)-porphyrins and derivatives through chlorosulfonation. Heterocycles 43:829–838.CrossRefGoogle Scholar
  47. 46.
    Hambright, P. 1975. Dynamic coordination chemistry of metalloporphyrins, p. 233–278. In K.M. Smith (Ed.), Porphyrins and Metalloporphyrins, Elsevier, Amsterdam.Google Scholar
  48. 47.
    Hantbright, P. 2000. The chemistry of water-soluble porphyrins, Ch. 18. In K. Kadish, K.M. Smith and R. Guilard (Eds.), The Porphyrin Handbook. Academic Press, New York.Google Scholar
  49. 48.
    Hambright, P., A. Adeyemo, A. Shamim, and S. Lemelle. 1985. [[4,4′,4″,4‴-porphyrin-5,10,15,20-tetrayltetrakis(l-methylpyridiniumato](2-)]-indium(III) pentaperchlorate. Inorg. Synth. 23:55–59.CrossRefGoogle Scholar
  50. 49.
    Hambright, P. and E.B. Fleischer. 1970. The acid-base equilibria, kinetics of copper ion incorporation and acid-catalyzed zinc ion displacement from the water-soluble α,β,γ,δ-tetra(4-N-methylpyridyl)porphyrin. Inorg. Chem. 9:1757–1761.CrossRefGoogle Scholar
  51. 50.
    Hantbright, P., A. Turner, J.S. Cohen, R.C. Lyon, A. Katz, P. Neta, and A. Adeyemo. 1987. An iron(III) porphyrin that exhibits minimal dimerization in aqueous solution. Inorg. Chim. Acta 128:L11–L14.CrossRefGoogle Scholar
  52. 51.
    Han, F.X., R.T. Wheelhouse, and L.H. Hurley. 1999. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for differential effects on telomerase inhibition. J. Am. Chem. Soc. 121:3561–3570.CrossRefGoogle Scholar
  53. 52.
    Haye, S.E. and P. Hambright. 1984. Equilibrium constants and electrophylic exchange reactions of lead(II) porphyrins. Inorg. Chem. 23:4777–4779.CrossRefGoogle Scholar
  54. 53.
    Herrmann, O., S.H. Mehdi, and A. Corsini. 1978. Heterogeneous metal-insertion: a novel reaction with porphyrins. Can. J. Chem. 56:1084–1089.CrossRefGoogle Scholar
  55. 54.
    Hoffmann, P., G. Labat, A. Robert, and B. Meunier. 1990. Highly selective bromination of tetramesitylporphyrin: an easy access to robust metallo-porphyrins, M-Br8-TMP and M-Br8-TMPS. Tetrahedron Lett. 31:1991–1994.CrossRefGoogle Scholar
  56. 55.
    Igarashi, S. and T. Yotsuyanagi. 1984. New “amphoteric ion type” water-soluble porphines as a spectrophotometric agent. Chem. Lett. 1871–1874.Google Scholar
  57. 56.
    Islam, M.Q. and P. Hambright. 1998. Lithium complexes and the kinetics of interactions of zinc ions with tetra(N-methyl-4-pyridyl)porphyrins in basic solution. Trans. Met. Chem. 23:727–733.CrossRefGoogle Scholar
  58. 57.
    Ito, Y., K. Kunimoto, S. Miyachi, and T. Kato. 1991. Photocatalytic cleavage of 1,2-diols by a cofacial hindered water-soluble iron(III) porphyrin. Tetrahedron Lett. 32:4007–4010.CrossRefGoogle Scholar
  59. 58.
    Izbicka, E., R.T. Wheelhouse, E. Raymond, K.K. Davidson, R.A. Lawrence, D. Sun, B.E. Windle, L.H. Hurley, and D.D. Von Hoff. 1999. Effect of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 59:639–644.PubMedGoogle Scholar
  60. 59.
    Jimenez, H.R., M. Julve, J.M. Moratal and J. Fuas. 1987. Stability constants of metalloporphyrins. a study of the protonation, deprotonation and formation of copper(II) and zinc(II) complexes of meso-tetra(p-sufonatophenyl)porphyrin. J. Chem. Soc. Chem. Commun. 910–911.Google Scholar
  61. 60.
    Kachadourian, R., I. Batinic-Haberle, and I. Fridovich. 1999. Synthesis and superoxide dismuting activities of partially (1–4) β-chloronated derivatives of manganese(III) meso-tetrakis(N-ethylpyridinium-3-yl)porphyrin. Inorg. Chem. 38:391–396.CrossRefGoogle Scholar
  62. 61.
    Kadish, K.M., C. Araullo-McAdams, B.C. Han, and M.M. Franzen. 1990. Synthesis and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP is the dianion of meso-tetrakis(o,o,m,m,-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = Co(II), Cu(II) or Ni(II). Structures of (meso-tetrakis(pentafluorophenyl)porphyrinato)cobalt(II), (TF5PP)Co. J. Am. Chem. Soc. 112:8364–8368.CrossRefGoogle Scholar
  63. 61a.
    Kadish, K., K.M. Smith, and R. Guilard (Eds.). 2000. The Porphyrin Handbook. Academic Press, New York.Google Scholar
  64. 62.
    Kalyanasundaram, K. 1984. Photochemistry of water-soluble porphyrins: comparative study of isomeric tetrapyridyl and tetraksi(N-methylpyridiniumyl)-porphyrins. Inorg. Chem. 23:2453–2459.CrossRefGoogle Scholar
  65. 63.
    Kalyansundaram, K. 1991. Photochemistry of Poly-pyridine and Porphyrin Complexes. Academic Press, New York.Google Scholar
  66. 64.
    Kaufmann, T., B. Shamsai, R.S. Lu, R. Bau, and G.M. Miskelly. 1995. Separation of the rotational isomers of tetrakis(N-methyl-2-pyridiniumyl)-porphyrin and the crystal structure of α,α,α,β-(tetrakis(N-methyl-2-pyridiniumyl)porphyrin copper hexacyanoferrate. Inorg. Chem. 34:5073–5079.CrossRefGoogle Scholar
  67. 65.
    Krishnamurthy, M. 1977. Synthesis and characterization of a new water-soluble porphyrin. Indian J. Chem. 15B:964–966.Google Scholar
  68. 66.
    Krishnamurthy, M. 1977. Kinetics of anation reactions of a water-soluble rhodium(III) porphyrin. Inorg. Chim. Acta. 25:215–218.CrossRefGoogle Scholar
  69. 67.
    Krishnamurthy, M., J.R. Sutter, and P. Hambright. 1975. Monomer-dimer equilibration of water-soluble porphyrins as a function of the coordinated metal ion. J. Chem. Soc. Chem. Commun. 13–14.Google Scholar
  70. 68.
    La, T., R.A. Richards, R.S. Lu, R. Bau, and G.M. Miskelly. 1995. Solution chemistry and crystal structure of nickel tetrakis(2,3,5,6-tetrafluofo-N,N,N-trimethyl-4-aniliniumyl)porphyrin trifluoromethanesulfonate (NiTF4TMAP(CF3SO3)4). Inorg. Chem. 34:5632–5640.CrossRefGoogle Scholar
  71. 69.
    La, T., R.V. Richards, and G.M. Miskelly. 1994. Synthesis and characterization of the cationic porphyrin meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphyrin. Inorg. Chem. 33:3159–3163.CrossRefGoogle Scholar
  72. 70.
    Lascelles, J. 1964. Tetrapyrrole biosynthesis and its regulation. Benjamin, New York.Google Scholar
  73. 71.
    Lavallee, D.K. 1987. The Chemistry and Biochemistry of N-Substituted Porphyrins. VCH Publishers, New York.Google Scholar
  74. 72.
    Lavallee, D.K., A. White, A. Diaz, J.-P. Battioni, and D. Mansuy. 1986. Efficient metalloporphyrin synthesis under mild conditions using N-benzylporphyrins. Tetrahedron Lett. 27:3521–3524.CrossRefGoogle Scholar
  75. 73.
    Lee, J., J.A. Hunt, and J.A. Groves. 1998. Manganese porphyrins as redox-coupled peroxynitrite reductases. J. Am. Chem. Soc. 120:6053–6061.CrossRefGoogle Scholar
  76. 74.
    Lemberg, R. and J.W. Legge. 1949. Haematin Compounds and Bile Pigments. Interscience, New York.Google Scholar
  77. 75.
    Li, H. and L. Czuchajowski. 1994. Ribofuransoides N-substituted with meso-porphyrin as nucleoside-like compounds. Tetrahedron Lett. 35:1629–1630.CrossRefGoogle Scholar
  78. 75a.
    Lim, C.K. (Ed.). 2001. Porphyrins. In Methods of Chromatography, Vol. 2. World Scientific Publishers, New York.Google Scholar
  79. 76.
    Lindsey, J. 1980. Increased yield of a desired isomer by equilibria displacement of binding to silica gel, applied to meso-tetrakis(o-aminophenyl)-porphyrin. J. Org. Chem. 45:5215.CrossRefGoogle Scholar
  80. 77.
    Lindsey, J.S. and R.W. Wagner. 1989. Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J. Org. Chem. 54:828–836.CrossRefGoogle Scholar
  81. 78.
    Longo, F. R., M. G. Finarelli, and J. Kim. The synthesis and some physical properties of ms-tetra(pentafluorophenyl)porphin and ms-tetra(pentachloro-phenyl) porphin. 1969. J. Heterocycl. Chem. 6:927–931.CrossRefGoogle Scholar
  82. 79.
    Lyon, R.C., P.J. Faustino, J.S. Cohen, A. Katz, F. Mornex, D. Colcher, C. Baglin, S.H. Koenig and P. Hambright. 1987. Tissue distribution and stability of metalloporphyrin MRI contrast agents. Magn. Reson. Med. 4:24–33.PubMedCrossRefGoogle Scholar
  83. 80.
    Margalit, R. and M. Rotenberg. 1984. Thermodynamics of porphyrin dimerization in aqueous solution. Biochem. J. 219:445–450PubMedGoogle Scholar
  84. 81.
    Marzilli, L.G. 1990. Medical aspects of DNA-porphyrin interactions. New J. Chem. 14:409–420.Google Scholar
  85. 82.
    Mauzerall, D. 1965. Spectra of molecular complexes of porphyrins in aqueous solution. Biochemistry. 4:1801–1810.CrossRefGoogle Scholar
  86. 83.
    Meng, G.G., B.R. James, K.A. Skov, and M. Korbelik. 1994. Porphyrin chemistry pertaining to the design of anti-cancer drugs; part 2, the synthesis and in vitro test of water-soluble porphyrins containing, in the meso positions, the functional groups: 4-methylpyridinium, or 4-sulfonatophenyl, in combination with phenyl, 4-pyridyl, 4-nitrophenyl, or 4-aminophenyl. Can. J. Chem. 72:2447–2457.CrossRefGoogle Scholar
  87. 84.
    Milgrom, L.R. 1997. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford Press, New York.Google Scholar
  88. 85.
    Miskelly, G.M., W.S. Webley, C.R. Clark, and D.A. Buckingham. 1988. Acidity and dimerization of three water-soluble iron(III) porphyrin cations: (meso-α,β,α,β-tetrakis(o-(Nmethylnicotinamido) phenyl) porphyrinato)iron(III), (meso α,α,α,α-tetrakis(o-N-methylnicotinamido) phenyl)porphyrinato)iron(III), and (meso-tetrakis(1-methylpyridinium-4-yl)porphyrinato)iron(III). Inorg. Chem. 27:3773–3781.CrossRefGoogle Scholar
  89. 86.
    Neilands, J.B. and J.A. Garibaldi. 1960. Coproporphyrin III tetramethyl ester. Biochem. Prep. 7:36–38.Google Scholar
  90. 87.
    Ohno, O., Y. Kaizu, and H. Kobayashi. 1993. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J. Chem. Phys. 99:4128–4459.CrossRefGoogle Scholar
  91. 88.
    Ojadi, E., R. Selzer, and H. Linschitz. 1985. Properties of porphyrin dimers, formed by pairing cationic and anionic porphyrins. J. Am. Chem. Soc. 107:7783–7784.CrossRefGoogle Scholar
  92. 89.
    Pasternack, R.F. and E.J. Gibbs. 1996. Porphyrin and metalloporphyrin interactions with nucleic acids. In A. Sigel and H. Sigel (Eds.), Metal Ions In Biological Systems 33. Marcel Decker, New York.Google Scholar
  93. 90.
    Pasternack, R.F., P.R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, G. Cerio Venturo, and L. deC. Hinds. 1972. On the aggregation of meso-substituted water-soluble porphyrins. J. Am. Chem. Soc. 94:4511–4517.PubMedCrossRefGoogle Scholar
  94. 91.
    Pasternack, R.F., H. Lee, P. Malek, and C. Spenser. 1977. Solution properties of tetrakis-(4-N-methyl) pyridylporphineiron(III). J. Inorg. Nucl. Chem. 39: 1865–1870.CrossRefGoogle Scholar
  95. 92.
    Pasternack, R.A., K.F. Schaefer, and P. Hambright. 1994. Resonance light scattering studies of porphyrin diacid aggregates. Inorg. Chem. 33:2062–2065.CrossRefGoogle Scholar
  96. 93.
    Petho, G. and L.G. Marzilli. 1994. A new spectrophotometric method for determination of cationic porphyrinis. Microchem. J. 50:178–183.CrossRefGoogle Scholar
  97. 94.
    Purrello, R., L. Monsu’ Scolaro, E. Bellacchio, S. Gurrieri, and A. Romer. 1998. Chiral H-and J-type aggregates of meso-tetrakis(4-sulfonatophenyl)porphine on α-helical polyglutamic acid induced by cationic porphyrins. Inorg. Chem. 37:3647–3648.PubMedCrossRefGoogle Scholar
  98. 95.
    Ribo, J.M., J. Crusats, J.-A. Farrera, and M.L. Valero. 1994. Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonato-phenyl)porphyrin. J. Chem. Soc. Chem. Commun. 681–682.Google Scholar
  99. 96.
    Richards, R.A., K. Hammons, M. Joe, and G.M. Miskelly. 1996. Observation of a stable water-soluble lithium porphyrin. Inorg. Chem 35:1940–1944.CrossRefGoogle Scholar
  100. 97.
    Rimington, C. 1952. Haems and porphyrins in health and disease. II. Acta Med. Scand. 143:177–196.CrossRefGoogle Scholar
  101. 98.
    Rimington, C. and C.A. Miles. 1951. A study of the porphyrins excreted in urine by a case of congenital porphyria. Biochem. J. 50:202–206.PubMedGoogle Scholar
  102. 99.
    Robinson, L.R. and P. Hambright. 1992. Mercury(II) reactions with water-soluble porphyrins. Inorg. Chem. 31:652–656.CrossRefGoogle Scholar
  103. 100.
    Rousseau, K. and D. Dolphin. 1974. A purification of meso-tetraphenyl-porphyrin. Tetrahedron Lett. 48: 4251–4254.CrossRefGoogle Scholar
  104. 101.
    Sari, M.A., J.P. Battioni, D. Dupre, D. Mansuy, and J.B. Le Pecq. 1990. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for interaction. Biochemistry 29:4205–4215.PubMedCrossRefGoogle Scholar
  105. 102.
    Schneider, H.-J. and M. Wang. 1994. Ligand-porphyrin complexes: quantitative evaluation of stacking and ionic contributions. J. Org. Chem. 59:7464–7472.CrossRefGoogle Scholar
  106. 103.
    Schwartz, S., M.H. Berg, I. Bossenmaier, and H. Dinsmore. 1960. Determination of porphyrins in biological material, p. 221–293. In D. Glick (Ed.), Methods of Biochemical Analysis, Vol. VIII. Wiley & Sons, New York.CrossRefGoogle Scholar
  107. 104.
    Shamim, A. and P. Hambright. 1980. An equilibrium and kinetic study of water-soluble cadmium porphyrins. Inorg. Chem. 19:564–566.CrossRefGoogle Scholar
  108. 105.
    Shamim, A., P. Worthington, and P. Hambright. 1981. Synthesis and characterization of phenyl/4-pyridyl meso substituted porphyrins. J. Chem. Soc. Pakistan 3:1–3.Google Scholar
  109. 106.
    Smith, K.M. (Ed.) 1975. Porphyrins and Metalloporphyrins. Elsevier, Amsterdam.Google Scholar
  110. 107.
    Smith, K.M., E.M. Fujinara, K.C. Langrey, D.W. Parish, and H.D. Tabba. 1983. Manipulation of vinyl groups in protoporphyrin IX: introduction of deuterium and carbon-13 labels for spectroscopic studies. J. Am. Chem. Soc. 105:6638–6646.CrossRefGoogle Scholar
  111. 108.
    Sternberg, E.D., D. Dolphin, and C. Bruckner. 1998. Porphyrin based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202.CrossRefGoogle Scholar
  112. 109.
    Sugata, S., S. Yamanouchi, and Y. Matsushima. 1977. Meso-tetrapyridyl-porpyrins and their metal complexes. Synthesis and physico-chemical properties. Chem. Pharm. Bull. 25:884–889.Google Scholar
  113. 110.
    Sutter, T.P.G., R. Rahimi, P. Hambright, J. Bommer, M. Kumar, and P. Neta. 1993. Steric and inductive effects on the basicity of porphyrins and on the site of protonation of porphyrin dianions: radiolytic reduction of porphyrins and metalloporphyrins to chlorins or phlorins. J. Chem. Soc. Faraday Trans. 89: 495–502.CrossRefGoogle Scholar
  114. 111.
    Turay, J., P. Hambright and N. Datta-Gupta. 1978. Intermolecular association of natural and synthetic water-soluble porphyrins, J. Inorg. Nucl. Chem. 40:1687–1688.CrossRefGoogle Scholar
  115. 112.
    Turk, H. and W.T. Ford. 1991. Epoxidation of styrene with aqueous hypochlorite catalyzed by a manganese(III) porphyrin bound to collodial anion-exchange particles. J. Org. Chem. 56:1253–1260.CrossRefGoogle Scholar
  116. 113.
    Valiotti, A., A. Adeyemo, R.F.X. Williams, L. Ricks, J. North and P. Hambright. 1981. A water-soluble “picket fence” porphyrin and its isomers. J. Inorg. Nucl. Chem. 43:2653–2658.CrossRefGoogle Scholar
  117. 114.
    Varadi, V., F.R. Longo, and A.D. Adler. Nonchro-matographic methods of purification of porphyrins. 1978, p. 581–588. In D. Dolphin (Ed.), The Porphyrins, Vol. I, Part A. Academic Press, New York.Google Scholar
  118. 115.
    White, W.I. 1978. Aggregation of porphyrins and metalloporphyrins, p. 303–339. In D. Dolphin (Ed.), The Porphyrins, Vol. V. Chapter 7. Academic Press, New York.Google Scholar
  119. 116.
    White, W.I., R.C. Bachman, and B.F. Burnham. 1978. Chromatography of porphyrins and metalloporphyrins, p 553–580. In D. Dolphin (Ed.), The Porphyrins, Vol. I, Part A. Academic Press, New York.Google Scholar
  120. 117.
    White, W.I. and R.A. Plane. 1974. A homologous series of water-soluble porphyrins and metalloporphyrins: synthesis, dimerization, protonation and self-complexation. Bioinorg. Chem. 4:21–35.PubMedCrossRefGoogle Scholar
  121. 118.
    With, T.K. 1958. Preparation of crystalline porphyrin esters from bovine porphyria urine. Biochem. J. 68:717–720.PubMedGoogle Scholar
  122. 119.
    Worthington, P., P. Hambright, R.F.X. Williams, M.R. Feldman, K.M. Smith, and K.C. Langry. 1980. Reduction potentials of beta-substituted free base porphyrins. Inorg. Nucl. Chem. Lett. 16:441–447.CrossRefGoogle Scholar
  123. 120.
    Worthington, P., P. Hambright, R.F.X. Williams, J. Reid, C, Burnham, A. Shamim, D.M. Bell, R. Kirkland, R.G. Little, N. Datta-Gupta, and U. Eisner. 1980. Reduction potentials of seventy-five free base porphyrin molecules: reactivity correlations and the production of potentials. J. Inorg. Biochem. 12:281–291.CrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Jerry C. Bommer
    • 1
  • Peter Hambright
    • 2
  1. 1.Frontier Scientific/Porphyrin ProductsLogan
  2. 2.Department of ChemistryHoward UniversityWashington, DCUSA

Personalised recommendations