Structural Study of Heme Proteins by Electron Microscopy of 2-Dimensional Crystals

  • Terrence G. Frey
Part of the Springer Protocols Handbooks book series (SPH)


Characterization of membrane proteins has always lagged behind that of soluble proteins, because most techniques of protein purification and structural study depend upon having a water-soluble preparation. The development of myriad classes of detergents over the past decades has greatly facilitated the purification of integral membrane proteins and many of the techniques of structural characterization. Direct measurement of the 3-dimensional (3D) structures of integral membrane proteins has proceeded more slowly, but significant progress was made in the past 10 to 15 years, and the atomic structures of a number of membrane proteins are now known. Although X-ray crystallography and 2-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy have been used to elucidate the structures of thousands of soluble proteins, their utility in the structural study of membrane proteins has been limited by the difficulty of growing 3D crystals in the case of X-ray techniques or by the large size of protein-detergent micelles in the case of NMR spectroscopy.


Cytochrome Oxidase Purple Membrane Thin Carbon Film Electron Crystallography Contrast Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

critical micelle concentration


charge-coupled device


contrast transfer function


signal to noise ratio






  1. 1.
    Adrian, M., J. Dubochet, S.D. Fuller, and J.R. Harris. 1998. Cryo-negative staining. Micron 29:145–160.PubMedCrossRefGoogle Scholar
  2. 2.
    Aebi, U., B. Heggeler, L. Onorato, J. Kistler, and M.K. Showe. 1977. New method for localizing proteins in periodic structures: Fab fragment labeling combined with image processing of electron micrographs. Proc. Nad. Acad. Sci. USA 74:5514–5518.CrossRefGoogle Scholar
  3. 3.
    Aebi, U. and T.D. Pollard. 1987. A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J. Electron Microsc. Tech. 7:29–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Amos, L.a., R. Henderson, and P.N.T. Unwin. 1982. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 35:183–231.Google Scholar
  5. 5.
    Berriman, J., R.K. Bryan, R. Freeman, and K.R. Leonard. 1984. Methods for specimen thickness determination in electron microscopy. Ultramicroscopy 73:351–364.CrossRefGoogle Scholar
  6. 6.
    Bhairi, S.M. 1997. Detergents: A Guide to the Properties and Uses of Detergents in Biological Systems. Calbiochem-Novabiochem Corporation, San Diego.Google Scholar
  7. 7.
    Bozzola, J.J. and L.D. Russell. 1999. Electron Microscopy. Principles and Techniques for Biologists. Jones and Bartlett, Boston.Google Scholar
  8. 8.
    Bron, P., J.J. Lacapere, C. Breyton, and G. Mosser. 1999. The 9 Å projection structure of cytochrome b6f complex determined by electron crystallography. J. Mol. Biol. 287:117–126.PubMedCrossRefGoogle Scholar
  9. 9.
    Capaldi, RA, V. Darley-Usmar, S. Fuller, and F. Millett. 1982. Structural and functional features of the interaction of cytochrome c with complex III and cytochrome c oxidase. FEBS Lett. 138:1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiu, W. and T.W. Jeng. 1982. Electron radiation sensitivity of protein crystals. Ultramicroscopy 10:63–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Conway, J.F. and A.C. Steven. 1999. Methods for reconstructing density maps of “single” particles from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128:106–118.PubMedCrossRefGoogle Scholar
  12. 12.
    Costello, M.J., J. Escaig, K. Matsushita, P.V. Viitanen, D.R. Menick, and H.R. Kaback. 1987. Purified lac permease and cytochrome o oxidase are functional as monomers. J. Biol. Chem. 262:17072–17082.PubMedGoogle Scholar
  13. 13.
    Costello, M.J. and T.G. Frey. 1982. Membranous cytochrome c oxidase. A freeze-fracture electron microscopic analysis. J. Mol. Biol. 762:131–156.CrossRefGoogle Scholar
  14. 14.
    Crowther, RA., D.J. De Rosier, and A. Hug. 1970. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. A 317:319.CrossRefGoogle Scholar
  15. 15.
    Crowther, R.A. and U.B. Sleytr. 1977. An analysis of the fine structure of the surface layers from two strains of Clostridia, including correction for distorted images. J.Ultrastruct. Res. 58:41–49.PubMedCrossRefGoogle Scholar
  16. l6.
    Crum, J., K.J. Gruys, and T.G. Frey. 1994. Electron microscopy of cytochrome c oxidase crystals: labeling of subunit III with a monomaleimide undecagold cluster compound. Biochemistry 33:13719–13726.PubMedCrossRefGoogle Scholar
  17. 17.
    Deatherage, J.F., R. Henderson, and R.A. Capaldi. 1982. Relationship between membrane and cytoplasmic domains in cytochrome c oxidase by electron microscopy in media of different density. J. Mol. Biol. 158:501–514.PubMedCrossRefGoogle Scholar
  18. 18.
    Deatherage, J.F., R. Henderson and R.A. Capaldi. 1982. Three-dimensional structures of cytochrome c oxidase vesicle crystals in negative stain. J. Mol. Biol. 755:487–499.CrossRefGoogle Scholar
  19. 19.
    De Rosier, D.J. and P.B. Moore. 1970. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52:355–369.CrossRefGoogle Scholar
  20. 20.
    Dubochet, J. 1975. Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J. Ultrastruct. Res. 52:276–288.PubMedCrossRefGoogle Scholar
  21. 21.
    Dubochet, J., M. Adrian, J.J. Chang, J.C. Homo, J. Lepault, A.W. McDowall, and P. Schultz. 1988. Cryoelectron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.PubMedCrossRefGoogle Scholar
  22. 22.
    Dykstra, M.J. 1992. Biological Electron Microscopy. Theory, Techniques, and Troubleshooting. Plenum Press, New York.Google Scholar
  23. 23.
    Erickson, H.P. and A. Klug. 1971. Measurement and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Phil. Trans. R. Soc. Lond. B 261:105–118.CrossRefGoogle Scholar
  24. 24.
    Erickson, H.P., W.A. Voter, and K. Leonard. 1978. Image reconstruction in electron microscopy: enhancement of periodic structure by optical filtering. Methods Enzymol. 49:39–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferguson-Miller, S., D.L. Brautigan, and E. Margo-liash. 1978. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J. Biol. Chem. 253:149–159.PubMedGoogle Scholar
  26. 26.
    Frank, J. 1973. Computer processing of electron micrographs, p. 215–274. In J.K. Koehler (Ed.), Advanced Techniques in Biological Electron Microscopy. Springer-Verlag, Berlin.Google Scholar
  27. 27.
    Frank, J., W. Chiu, and L. Degn. 1988. The characterization of structural variations within a crystal field. Ultramicroscopy 26:345–360.PubMedCrossRefGoogle Scholar
  28. 28.
    Frank, J. and P. Penczek. 1995. On the correction of the contrast function in biological electron microscopy. Optik 98:125–129.Google Scholar
  29. 29.
    Frey, P.A. and T.G. Frey. 1999. Synthesis of undecagold labeling compounds and their applications in electron microscopic analysis of multiprotein complexes. J. Struct. Biol. 127:94–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Frey, T.G., S.H. Chan, and G. Schatz. 1978. Structure and orientation of cytochrome c oxidase in crystalline membranes. Studies by electron microscopy and by labeling with subunit-specific antibodies. J. Biol. Chem. 253:4389–4395.PubMedGoogle Scholar
  31. 31.
    Frey, T.G. and T. Chang. 1986. The structure of membrane bound cytochrome c oxidase. Ann. NY Acad. Sci. 483:120–130.PubMedCrossRefGoogle Scholar
  32. 32.
    Frey, T.G., M.J. Costello, and S.H. Chan. 1984. Selective contrast in electron microscopy of crystalline cytochrome oxidase. Ultramicroscopy 13:85–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Frey, T.G., M.J. Costello, B. Karlsson, J.C. Haselgrove, and J.S. Leigh. 1982. Structure of the cytochrome c oxidase dimer. Electron microscopy of two-dimensional crystals. J. Mol. Biol. 162:113–130.PubMedCrossRefGoogle Scholar
  34. 34.
    Frey, T.G., L.A. Kuhn, J.S. Leigh, Jr., M.J. Costello, and S.H. Chan. 1985. Cytochrome oxidase: structural insights from electron microscopy and from secondary structure prediction. J. Inorg. Biochem. 23:155–162.PubMedCrossRefGoogle Scholar
  35. 35.
    Frey, T.G. and J.M. Murray. 1994. Electron microscopy of cytochrome c oxidase crystals. Monomer-dimer relationship and cytochrome c binding site. J. Mol. Biol. 237:275–297.PubMedCrossRefGoogle Scholar
  36. 36.
    Fukami, A and K. Adachi. 1965. A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. 14:112–118.Google Scholar
  37. 37.
    Fuller, S.D., R.A. Capaldi, and R. Henderson. 1979. Structure of cytochrome c oxidase in deoxycholate-derived two-dimensional crystals. J. Mol. Biol. 134:305–327.PubMedCrossRefGoogle Scholar
  38. 38.
    Glaeser, R.M. and K.A. Taylor. 1978. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112:127–138.PubMedGoogle Scholar
  39. 39.
    Hahn, M., J. Seredynski, and W. Baumeister. 1976. Inactivation of catalase monolayers by irradiation with 100 keV electrons. Proc. Nad. Acad. Sci. USA 73:823–827.CrossRefGoogle Scholar
  40. 40.
    Hayat, M.A. 1986. Transmission Electron Microscopy. Academic Press, Orlando.Google Scholar
  41. 41.
    Henderson, R., J.M. Baldwin, K.H. Downing, J. Lepault, and F. Zemlin. 1986. Structure of purple membrane from halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 A resolution. Ultramicroscopy 19:147–178.CrossRefGoogle Scholar
  42. 42.
    Henderson, R., R.A. Capaldi, and J.S. Leigh. 1977. Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J. Mol. Biol. 112:631–648.PubMedCrossRefGoogle Scholar
  43. 43.
    Henderson, R. and P.N. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Heuser, J. 1989. Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique. J. Electron Microsc. Tech. 13:244–263.PubMedCrossRefGoogle Scholar
  45. 45.
    Holser, W.T.Z. 1958. Point groups and plane groups in a two-sided plane and their subgroups. Z. Kristallogr. 110:266–281.CrossRefGoogle Scholar
  46. 46.
    Hovmoller, S., K. Leonard, and H. Weiss. 1981. Membrane crystals of a subunit complex of mitochon-drial cytochrome reductase containing the cytochromes b and c 1. FEBS Lett. 123:118–122.PubMedCrossRefGoogle Scholar
  47. 47.
    Hovmoller, S., M. Slaughter, J. Berriman, B. Karlsson, H. Weiss, and K. Leonard. 1983. Structural studies of cytochrome reductase. Improved membrane crystals of the enzyme complex and crystallization of a subcomplex. J. Mol. Biol. 165:401–406.PubMedCrossRefGoogle Scholar
  48. 48.
    Hutchinson, E.G., W. Tichelaar, G. Hofhaus, H. Weiss, and K.R. Leonard. 1989. Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J. 8:1485–1490.PubMedGoogle Scholar
  49. 49.
    Iwata, S., J.W. Lee, K. Okada, J.K. Lee, M. Iwata, B. Rasmussen, T.A. Link, S. Ramaswamy, and B.K. Jap. 1998. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex (see comments]. Science 281:64–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Jap, B.K., M. Zulauf, T. Scheybani, A. Hefti, W. Baumeister, and U. Aebi. 1992. 2D crystallization: from art to science. Ultramicroscopy 46:45–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Jayaraman, U., T. Chang, T.G. Frey, and J.K. Blasie. 1987. Electron density profile of two-dimensionally crystalline membranous cytochrome c oxidase at low resolution. Biophys. J. 51:475–486.PubMedCrossRefGoogle Scholar
  52. 52.
    Karlsson, B., S. Hovmoller, H. Weiss, and K. Leonard. 1983. Structural studies of cytochrome reductase. Subunit topography determined by electron microscopy of membrane crystals of a subcomplex. J. Mol. Biol. 765:287–302.CrossRefGoogle Scholar
  53. 53.
    Kim, C.H., M. Radermacher, M. Kessel, J. Frank, and T.E. King. 1985. Three-dimensional reconstruction of cytochrome oxidase vesicle crystals prepared by cholate solubilization. J. Inorg. Biochem. 23:163–169.PubMedCrossRefGoogle Scholar
  54. 54.
    Kühlbrandt, W. 1988. Structure of light-harvesting chlorophyll a/b protein complex from plant photosynthetic membranes at 7 A resolution in projection. J. Mol. Biol. 202:849–864.PubMedCrossRefGoogle Scholar
  55. 55.
    Kühlbrandt, W. 1992. Two-dimensional crystallization of membrane proteins. Q. Rev. Biophys. 25:1–49.PubMedCrossRefGoogle Scholar
  56. 56.
    Leonard, K., P. Wingfield, T. Arad, and H. Weiss. 1981. Three-dimensional structure of ubiquinohcytochrome c reductase from Neurospora mitochondria determined by electron microscopy of membrane crystals. J. Mol. Biol. 149:259–274.PubMedCrossRefGoogle Scholar
  57. 57.
    Lunsdorf, H. and E. Spiess. 1986. A rapid method of preparing perforated supporting foils for the thin carbon films used in high resolution transmission electron microscopy. J. Microsc. 144:211–213.Google Scholar
  58. 58.
    Malhotra, A., P. Penczek, R.K. Agrawal, I.S. Gabashvili, R.A. Grassucci, R. Junemann, N. Burkhardt, K.H. Nierhaus, and J. Frank. 1998. Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. J. Mol. Biol. 280:103–116.PubMedCrossRefGoogle Scholar
  59. 59.
    Mannella, C.A. 1984. Phospholipase-induced crystallization of channels in mitochondrial outer membranes. Science 224:165–166.PubMedCrossRefGoogle Scholar
  60. 60.
    Michel, H. 1991. Crystallization of Membrane Proteins. CRC Press, Boca Raton.Google Scholar
  61. 61.
    Miyazawa, A., Y. Fujiyoshi, M. Stowell, and N. Unwin. 1999. Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288:765–786.PubMedCrossRefGoogle Scholar
  62. 62.
    Mohraz, M. and P.R. Smith. 1984. Structure of (Na+,K+)-ATPase as revealed by electron microscopy and image processing. J. Cell Biol. 98:1836–1841.PubMedCrossRefGoogle Scholar
  63. 63.
    Murray, J.M. and R. Ward. 1987. Preparation of holey carbon films suitable for cryoelectron microscopy. J. Elec. Microsc. Tech. 5:285–290.CrossRefGoogle Scholar
  64. 64.
    Murray, J.M. and R. Ward. 1987. Principles for the construction and operation of a device for rapidly freezing suspensions for cryoelectron microscopy. J. Electron Microsc. Tech. 5:279–284.CrossRefGoogle Scholar
  65. 65.
    Salmon, E.D. and D. DeRosier. 1981. A surveying optical diffractometer. J. Microsc. 123:239–247.PubMedGoogle Scholar
  66. 66.
    Seki, S., H. Hayashi, and T. Oda. 1970. Studies on cytochrome oxidase. I. Fine structure of cytochrome oxidase-rich submitochondrial membrane. Arch. Biochem. Biophys. 735:110–121.CrossRefGoogle Scholar
  67. 67.
    Smith, P.R. and I.E. Ivanov. 1980. Surface reliefs computed from micrographs of isolated heavy metal shadowed particles. J. Ultrastruct. Res. 77:25–36.CrossRefGoogle Scholar
  68. 68.
    Sosinsky, G.E. and G.A. Perkins. 2000. Electron crystallographic methods for investigating gap junction structure [In Process Citation]. Methods 20:140–155.PubMedCrossRefGoogle Scholar
  69. 69.
    Stokes, D.L. and N.M. Green. 1990. Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys. J. 57:1–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Suarez, M.D., A. Revzin, R. Narlock, E.S. Kempner, D.A. Thompson, and S. Ferguson-Miller. 1984. The functional and physical form of mammalian cytochrome c oxidase determined by gel filtration, radiation inactivation, and sedimentation equilibrium analysis. J. Biol. Chem. 259:13791–13799.PubMedGoogle Scholar
  71. 71.
    Taylor, K.A., L. Dux, S. Varga, H.P. Ting-Beall, and A. Martonosi. 1988. Analysis of two-dimensional crystals of Ca2+-ATPase in sarcoplasmic reticulum. Methods Enzymol. 757:271–289.CrossRefGoogle Scholar
  72. 72.
    Taylor, K.A. and R.M. Glaeser. 1976. Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55:448–456.PubMedCrossRefGoogle Scholar
  73. 73.
    Toyoshima, C. and N. Unwin. 1988. Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images. Ultramicroscopy 25:279–291.PubMedCrossRefGoogle Scholar
  74. 74.
    Tsukihara, T., H. Aoyama, E. Yamashita, T. Tomiza-ki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. 1995. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A [see comments]. Science 269:1069–1074.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsukihara, T., H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A [see comments]. Science 272:1136–1144.PubMedCrossRefGoogle Scholar
  76. 76.
    Unger, V.M., N.M. Kumar, N.B. Gilula, and M. Yeager. 1999. Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180.PubMedCrossRefGoogle Scholar
  77. 77.
    Unwin, P.N.T. 1974. Electron microscopy of the stacked disk aggregate of Tobacco Mosaic Virus protein. II. The influence of electron irradiation on the stain distribution. J. Mol. Biol. 87:657–670.PubMedCrossRefGoogle Scholar
  78. 78.
    Unwin, P.N.T. and R. Henderson. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425–440.PubMedCrossRefGoogle Scholar
  79. 79.
    Valpuesta, J.M., R. Henderson, and T.G. Frey. 1990. Electron cryo-microscopic analysis of crystalline cytochrome oxidase. J. Mol. Biol. 214:237–251.PubMedCrossRefGoogle Scholar
  80. 80.
    Vanderkooi, G., A.E. Senior, R.A. Capaldi, and H. Hayashi. 1972. Biological membrane structure. 3. The lattice structure of membranous cytochrome oxidase. Biochim. Biophys. Acta 274:38–48.PubMedCrossRefGoogle Scholar
  81. 81.
    Weiss, H., S. Hovmoller, and K. Leonard. 1986. Preparation of membrane crystals of ubiquinol-cytochrome-c reductase from Neurospom mitochondria and structure analysis by electron microscopy. Methods Enzymol. 126:191–201.PubMedCrossRefGoogle Scholar
  82. 82.
    Wikoff, W.R., G. Wang, C.R. Parrish, R.H. Cheng, M.L. Strassheim, T.S. Baker, and M.G. Rossmann. 1994. The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure 2:595–607.PubMedCrossRefGoogle Scholar
  83. 83.
    Williams, R.C. and H.W. Fisher. 1970. Electron microscopy of Tobacco Mosaic virus under conditions of minimal beam exposure. J. Mol. Biol. 52:121–123.PubMedCrossRefGoogle Scholar
  84. 84.
    Wingfield, P., T. Arad, K. Leonard, and H. Weiss. 1979. Membrane crystals of ubiquinone:cytochrome c reductase from Neurospora mitochondria. Nature 280:696–697.PubMedCrossRefGoogle Scholar
  85. 85.
    Xia, D., C.A. Yu, H. Kim, J.Z. Xia, A.M. Kachurin, L. Zhang, L. Yu, and J. Deisenhofer. 1997. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria [published erratum appears in Science 1997 Dec 19;278(5346):2037]. Science 277:60–66.PubMedCrossRefGoogle Scholar
  86. 86.
    Yeager, M., V.M. Unger, and A.K. Mitra. 1999. Three-dimensional structure of membrane proteins determined by two-dimensional crystallization, electron cryomicroscopy, and image analysis. Methods Enzymol. 294:135–180.PubMedCrossRefGoogle Scholar
  87. 87.
    Zeppenzauer, M. 1971. Formation of large crystals, p. 253. In W.B. Jacoby (Ed.), Methods of Enzymology. Academic Press, New York.Google Scholar
  88. 88.
    Zhang, Z., L. Huang, V.M. Shulmeister, Y.I. Chi, K.K. Kim, L.W. Hung, A.R. Crofts, E.A. Berry, and S.H. Kim. 1998. Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhu, J., P.A. Penczek, R. Schroder, and J. Frank. 1997. Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol. 118:197–219.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2002

Authors and Affiliations

  • Terrence G. Frey
    • 1
  1. 1.San Diego State University San DiegoUSA

Personalised recommendations