Primary Cultures of Sympathetic Ganglia

  • Mary I. Johnson
Part of the Springer Protocols Handbooks book series (SPH)


A derivative of the neural crest, sympathetic neurons have been utilized in both in vivo and in vitro studies to approach a number of basic questions concerning the development and function of the nervous system. The superior cervical ganglia (SCG), and particularly the sympathetic chain, can provide significant numbers of neurons with relatively little effort in dissection, and, with a known and available growth factor (nerve growth factor [NGF]), can be maintained in culture for prolonged periods of time. As a result, cultures of sympathetic neurons, many times from rats or mice, but also from avian and amphibian sources, have been utilized to study factors influencing synaptic function, neurotransmitter differentiation, neurotrophic dependence, dendritic development, and axonal growth, including the structure and function of growth cones. Studies of axonal elongation, substrate requirements, and molecular interactions, underlying neurite extension and ensheathment, have utilized explants; other experiments on dendrite growth, cell death, and neurotransmitter changes have used dissociated, even isolated, single neurons, depending on the question being asked. The following paragraphs contain detailed methods for the dissection of sympathetic neurons from embryonic, perinatal, and adult rats.


Sympathetic Neuron Superior Cervical Ganglion Nerve Trunk Nodose Ganglion Fine Forceps 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

General References

  1. Bunge, M. B., Johnson, M. I., Ard, M. D., and Kleitman, N. (1987), Factors influencing the growth of regenerating nerve fibers in culture, in: Progress in Brain Research, vol. 71, Seil, F. J., Herbert, E., and Carlson, B. M., eds., Elsevier, pp. 61–74.Google Scholar
  2. Bunge, M. B., Bunge, R. P., Carey, D. J., Cornbrooks, C. J., Eldridge, C. F., Williams, A. K., and Wood, P. M. (1983), Axonal and nonaxonal influences in Schwann cell development, in: Developing and Regenerating Vertebrate Nervous Systems, Coates, P., Markwald, R., Kenny, A., eds., Alan R. Liss, New York, pp. 71–105.Google Scholar
  3. Bunge, R. P. (1986), The cell of Schwann, in: Diseases of the Nervous System, Saunders, New York, pp. 153–162.Google Scholar
  4. Bunge, R. P., Bunge, M. B., and Eldridge, C. E. (1985), Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9, 305–328.CrossRefGoogle Scholar
  5. Bunge, R. P., Johnson, M. and Ross, C. D. (1978), Nature and nurture in the development of the autonomic neuron. Science 199, 1409–1416.PubMedCrossRefGoogle Scholar
  6. Eldridge, C. F., Cornbrooks, C. J., Chiu, A. Y., Bunge, R. P., and Sanes, J. R. (1986), Basal lamina-associated heparan sulfate proteoglycan in the rat peripheral nervous system: characterization and localization using monoclonal antibodies. J. Neurocytol. 15, 37–51.PubMedCrossRefGoogle Scholar
  7. Higgins, D. and Burton, H. (1982), Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically-defined culture medium. Neuroscience 7, 2241–2253.PubMedCrossRefGoogle Scholar
  8. Johnson, M. I. and Argiro, V. (1983), Techniques for preparation of sympathetic ganglion cultures. Methods Enzymol 103, 334–347.PubMedCrossRefGoogle Scholar
  9. Lein, P., Quo, X., Hedges, A. M., Rueger, D., Johnson, M., and Higgins, D. (1996), The effects of extracellular matrix and osteogenic protein-1 on the morphological differentiation of rat sympathetic neurons. Int. J. Devi Neurosci. 14, 203–215.CrossRefGoogle Scholar
  10. Mahanthappa, N. K. and Patterson, P. H. (1998), Culturing mammalian sympathoadrenal derivatives, in: Culturing Nerve Cells, 2nd ed., Banker, G. and Goslin, K., eds., Massachusetts Institute of Technology, Boston, MA, pp. 289–307.Google Scholar
  11. Ratner, N., Bunge, R. P., and Glaser, L. (1985), A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101, 744–754.PubMedCrossRefGoogle Scholar

Specific References

  1. Argiro, V., Bunge, M. D., and Johnson, M. I. (1984), Correlation between growth cone form and movement and their dependence on neuronal age. J. Neurosci. 4, 3051–3062.PubMedGoogle Scholar
  2. Bornstein, M. B. (1958), Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips. Lab. Invest. 7, 134–137.PubMedGoogle Scholar
  3. Bottenstein, J. E. and Sato, G. H. (1979), Growth of a rat neuroblastoma cell line in serum-free supplemented media. Proc. Natl. Acad. Sci. USA 76, 514–517.PubMedCrossRefGoogle Scholar
  4. Bray, D. (1970), Surface movements during the growth of single explanted neurons. Proc. Natl. Acad. Sci. USA 65, 905.PubMedCrossRefGoogle Scholar
  5. Brockes, J. P., Fields, K. L., and Raff, M. C. (1979), Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.PubMedCrossRefGoogle Scholar
  6. Bruckenstein, D. A. and Higgins, D. (1988a), Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. I. Conditions under which neurons form axons but not dendrites. Dev. Biol. 128, 324–336.PubMedCrossRefGoogle Scholar
  7. Bruckenstein, D. A. and Higgins, D. (1988b), Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. II. Serum promotes dendritic growth. Dev. Biol. 128, 337–348.PubMedCrossRefGoogle Scholar
  8. Bunge, R. P. and Wood, P. (1973), Studies on the transplantation of spinal cord tissue in the rat. I. Development of a culture system for minisections of embryonic spinal cord. Brain Res. 57, 261–276.PubMedCrossRefGoogle Scholar
  9. Bunge, R. P. and Wood, P. M. (1987), Tissue culture studies of interactions between axons and myelinating cells of the central and peripheral nervous system. Prog. Brain Res. 71, 143–152.PubMedCrossRefGoogle Scholar
  10. Crain, S. (1976), Neurophysiologic Studies in Tissue Culture. Raven, New York.Google Scholar
  11. Eagle, H. (1959), Amino acid metabolism in mammalian cell cultures. Science 130, 432–437.PubMedCrossRefGoogle Scholar
  12. Eldridge, C. F., Bunge, M. B., and Bunge, R. P. (1989), Differentiation of axon-related Schwann cells in vitro. II. Control of myelin formation by basal lamina. J. Neurosci. 9, 625–638.PubMedGoogle Scholar
  13. Eldridge, C. F., Bunge, M. B., Bunge, R. P., and Wood, P. M. (1987), Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034.PubMedCrossRefGoogle Scholar
  14. Fernandez-Valle, C., Fregien, N., Wood, P. M., and Bunge, M. B. (1993), Expression of the protein zero gene in axon-related Schwann cells is linked to basal lamina formation. Development 119, 867–880.PubMedGoogle Scholar
  15. Guenard, V., Gwynn, L. A., and Wood, P. M. (1995), Transforming growth factor-b blocks myelination but not ensheathment of axons by Schwann cells in vitro. J. Neurosci. 15, 419–428.PubMedGoogle Scholar
  16. Harrison, R. G. (1907), The living developing nerve fiber. Anat. Rec. 1, 116–118.CrossRefGoogle Scholar
  17. Higgins, D., Lein, P. J., Osterhout, D. J., and Johnson, M. I. (1991), Tissue culture of mammalian autonomic neurons, in: Culturing Nerve Cells, Banker, G., ed., Massachusetts Institute of Technology, Boston, MA, pp. 177–205.Google Scholar
  18. Hild, W. (1957), Myelinogenesis in cultures of mammalian central nervous tissue. Z. Zellforsch. 46, 71–95.PubMedCrossRefGoogle Scholar
  19. Iacovitti, L., Johnson, M. I., Joh, T. H., and Bunge, R. P. (1982), Biochemical and morphological characterization of sympathetic neurons grown in chemically defined medium. Neuroscience 7, 2225–2240.PubMedCrossRefGoogle Scholar
  20. Johnson, E. M., Rich, K. M., and Yip, H. K. (1986), The role of NGF in sensory neurons in vivo. TINS 9, 33–37.Google Scholar
  21. Johnson, M. I., Paik, K., and Higgins, D. (1985), Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons. J. Cell Biol. 101, 217–226.PubMedCrossRefGoogle Scholar
  22. Kleitman, N. and Johnson, M. I. (1989), Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures. Cell Motil. Cytoskel. 13, 288–300.CrossRefGoogle Scholar
  23. Kleitman, N., Wood, P., Johnson, M. I., and Bunge, R. P. (1988), Schwann cell surfaces but not extracellular matrix support neurite outgrowth from embryonic rat retina. J. Neurosci. 8, 653–663.PubMedGoogle Scholar
  24. Leibovitz, A. (1963), The growth and maintenance of tissue-cell culture in free gas exchange with the atmosphere. Am.J.Hyg. 78, 173–180.PubMedGoogle Scholar
  25. Lein, P., Johnson, M., Guo, X., Rueger, D., and Higgins, D. (1995), Osteogenic protein-1 induces dendritic growth in rat sympathic neurons. Neuron 15, 597–605.PubMedCrossRefGoogle Scholar
  26. Levi, A. D. O., Bunge, R. P., Lofgren, J. A., Meima, L., Hefti, E, Nikolics, K., and Slewkowski, M. X. (1995), The influence of heregulin on human Schwann cell proliferation. J. Neurosci. 15, 1329–1340.PubMedGoogle Scholar
  27. McCarthy, K. and de Vellis, J. (1980), Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  28. Meiri, K., Johnson, M. I., and Willard, M. (1988), Distribution and phosphorylation of the growth-associated protein, GAP-43, in regenerating sympathetic neurons in culture. J. Neurosci. 8, 2571–2581.PubMedGoogle Scholar
  29. Mithen, F. A., Cochran, M., Johnson, M. I., and Bunge, R. P. (1982), Neurotoxicity of polystyrene containers detected in a closed tissue culture system. Neurosci. Lett. 17, 107–111.CrossRefGoogle Scholar
  30. Morrissey, T. K., Kleitman, N., and Bunge, R. P. (1991), Isolation and functional characterization of Schwann cells derived from adult peripheral nerves. J. Neurosci. 11, 2433–2442.PubMedGoogle Scholar
  31. Morrissey, T. K., Kleitman, N., and Bunge, R. P. (1995), Human Schwann cells in vitro II: myelination of sensory axons following extensive purification and heregulin-induced expansion. J. Neurobiol. 28, 190–201.PubMedCrossRefGoogle Scholar
  32. Murray, M. M. (1965), Nervous tissue in vitro, in: Cells and Tissues in Culture, vol. 2, Wilmer, E. N., ed., Academic, New York, pp. 373–455.Google Scholar
  33. Obremski, V J., Johnson, M. I., and Bunge, M. B. (1993), Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture. J. Neurocytol. 22, 102–117.PubMedCrossRefGoogle Scholar
  34. Patterson, P. H. (1978), Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1, 1–17.PubMedCrossRefGoogle Scholar
  35. Peterson, E. R. and Murray, M. R. (1955), Myelin sheath formation of avian spinal ganglia. Am. J. Anat. 96, 319.PubMedCrossRefGoogle Scholar
  36. Porter, S., Clark, M. B., Glaser, L., and Bunge, R. P. (1986), Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J. Neurosci. 6, 3070–3078.PubMedGoogle Scholar
  37. Roufa, D., Bunge, M. B., Johnson, M. I., and Cornbrooks, C. J. (1986), Variation in content and function of non-neuronal cells in the outgrowth of sympathetic ganglia from embryos of differing age. J. Neurosci. 6, 790–802.PubMedGoogle Scholar
  38. Roufa, D. G., Johnson, M. J., and Bunge, M. B. (1983), Influence of ganglion age, nonneuronal cells and substratum on neurite outgrowth in culture. Dev. Biol. 99, 225–239.PubMedCrossRefGoogle Scholar
  39. Scarpini, E., Kreider, B. Q., Lisak, R. R, and Pleasure, D. E. (1988), Establishment of Schwann cell cultures from adult peripheral nerves. Exp. Neurol. 102, 167–176.PubMedCrossRefGoogle Scholar
  40. Tropea, M., Johnson, M. I., and Higgins, D. (1988), Glial cells promote dendritic development in rat sympathetic neurons in vitro. Glia 1, 380–392.PubMedCrossRefGoogle Scholar
  41. Wood, R (1976), Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 115, 361–375.PubMedCrossRefGoogle Scholar
  42. Wood, R M. and Bunge, R. R (1986), Myelination of cultured dorsal root ganglion neurons by oligodendrocytes obtained from adult rats. J. Neurol Sci. 74, 153–169.PubMedCrossRefGoogle Scholar
  43. Wood, R M. and Williams, A. K. (1984), Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Dev. Brain Res. 12, 225–241.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Mary I. Johnson
    • 1
  1. 1.Department of NeurologyUniversity of New Mexico School of MedicineAlbuquerque

Personalised recommendations