Cultures of Stem Cells of the Central Nervous System

  • Angela Gritti
  • Rossella Galli
  • Angelo Luigi Vescovi
Part of the Springer Protocols Handbooks book series (SPH)


Over the past few years, the view that little or no cell turnover or replacement takes place within the adult central nervous system (CNS) has changed dramatically. The adult brain of both rodents and primates has been shown to embody undifferentiated, mitotically active precursor cells that are multipotential in nature and may contribute new, differentiated neurons and glia to specific regions of the mature brain, such as the olfactory bulb (Hinds, 1968a,Hinds, 1968b; Bayer, 1983; Corotto et al., 1993; Lois and Alvarez-Buylla, 1994), the hippocampus (Altman and Das, 1965; Kaplan and Bell, 1984; Kuhn et al., 1996) and the cortex (Kaplan, 1981; Huang and Lim, 1990; Gould, et al., 1999). Although this clearly suggests the presence of stem cells in the adult CNS in vivo, testing the proliferation, self-renewal, and differentiation capacity of “putative” CNS stem cells relies on the development of methodologies that allow for their extensive propagation and expansion in vitro.


Stem Cell Neural Stem Cell Laminar Flow Hood Stem Cell Culture Resuspend Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Altman, J. and Das, G. D. (1965), Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–336.PubMedCrossRefGoogle Scholar
  2. Bayer, S. A. (1983), 3H-thymidine-radiographic studies on neurogenesis in the rat olfactory bulb. Exp. Brain Res. 50, 329–340.PubMedCrossRefGoogle Scholar
  3. Corotto, F. S., Henegar, J. A., and Maruniak, J. A. (1993), Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci. Lett. 149, 111–114.PubMedCrossRefGoogle Scholar
  4. Davis, A. A. and Temple S. (1994), A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 372, 263–266.PubMedCrossRefGoogle Scholar
  5. Gage, F. H., Coates P. W., and Palmer, T. D. (1995), Survival and differentiation of adult neuronal progenitor cells transplanted into the adult brain. Proc. Natl Acad. Sci. USA 92, 11,789–11,883.CrossRefGoogle Scholar
  6. Galli, R., Pagano, S., Gritti, A., and Vescovi, A. L. (2000), Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev. Neurosci., 22, 86–95.PubMedCrossRefGoogle Scholar
  7. Genschwind, D. H. and Hockfield, S. (1989), Identification of proteins that are developmentally regulated during early cerebral corticogenesis in the rat. J. Neurosci. 9, 4303–4320Google Scholar
  8. Gould, E., Reeves, A. J., Graziano, M. S. A., and Gross, C. (1999), Neurogenesis in the neocortex of adult primates. Science 286, 548–552.PubMedCrossRefGoogle Scholar
  9. Gritti, A., Parati, E. A., Cova, L., Frolichstal-Schoeller, P., Galli, R., Wanke, E., Faravelli, L., Morassutti, D. J., Roisen, F., Nickel, D. D., and Vescovi, A. L. (1996), Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.PubMedGoogle Scholar
  10. Gritti, A., Frolichstal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Pagano, S. F., Bjornson, C. R., and Vescovi, A. L. (1999), Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci. 19, 3287–3297.PubMedGoogle Scholar
  11. Hinds, J. W. (1968a), Autoradiographic study of histogenesis in the mouse olfactory bulb, II: Cell proliferation and migration. J. Comp. Neurol. 134, 305–322.PubMedCrossRefGoogle Scholar
  12. Hinds, J.W. (1968b), Autoradiographic study of histogenesis in the mouse olfactory bulb, I: time of origin of neurons and neuroglia. J. Comp. Neurol. 134, 287–304.PubMedCrossRefGoogle Scholar
  13. Hockfield, S. and McKay, R. D. G. (1985), Identification of major classes in the developing mammalian nervous system. J. Neurosci. 5, 3310–3328.PubMedGoogle Scholar
  14. Huang, L. and Lim, R. (1990), Identification of injury-induced mitotic cells in adult rat cerebral cortex by neuron specific markers. Dev. Brain Res. 51, 123–127.CrossRefGoogle Scholar
  15. Johe, K. K., Hazel, T., Muller, M. M., Dugich-Djordjevic, M. M., and McKay, R. D. G. (1996), Single factors direct the differentiation of stem cells from fetal and adult nervous system. Genes Dev. 10, 3129–3140.PubMedCrossRefGoogle Scholar
  16. Kaplan, M. S. (1981), Neurogenesis in the 3 month-old rat visual cortex. J. Comp. Neurol. 195, 323–338.PubMedCrossRefGoogle Scholar
  17. Kaplan, M. S. and Bell, D. H. (1984), Mitotic neuroblast in the 9-day-old and 11-month-old rodent hyppocampus. J. Neurosci. 4, 1429–1441.PubMedGoogle Scholar
  18. Kilpatrick, T. J. and Bartlett, P. F. (1995), Cloned multipotential precursors from the mouse cerebrum require FGF-2 whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 5, 3653–3661.Google Scholar
  19. Kuhn, H. G., Dickinson-Anson, H., and Gage, F. H. (1996), Neurogenesis in the dentate gyrus of adult rat: age-related decrease of neuronal progenitor population. J. Neurosci. 16, 2027–2033.PubMedGoogle Scholar
  20. Loeffler, M. and Potten, C. S. (1997), Stem cells and cellular pedigrees—a conceptual introduction, in: Stem Cells, Potten, C.S., ed., Academic, London, pp. 1–27.CrossRefGoogle Scholar
  21. Lois, C. and Alvarez-Buylla, A. (1994), Long-distance migration in the adult mammalian brain. Science 264, 1145–1148.PubMedCrossRefGoogle Scholar
  22. Morrison, S. J., Shah, N. M., and Anderson, D. J. (1997), Regulatory mechanisms in stem cell biology. Cell 88, 287–298.PubMedCrossRefGoogle Scholar
  23. Palmer, T. D., Ray, J., and Gage, F. H. (1995), FGF-2 responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486.PubMedCrossRefGoogle Scholar
  24. Perraud, F., Besnard, F., Pettmann, B., Sensenbrenner, M., and Labordette, G. (1988), Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblast in culture. Glia 1, 124–131.PubMedCrossRefGoogle Scholar
  25. Qian, X., Davis, A. A., Goderie, F., and Temple, S. (1997), FGF-2 concentration regulated the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.PubMedCrossRefGoogle Scholar
  26. Richards, L. J., Kilpatrick, T. J., and Bartlett, P. F. (1992), De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595.PubMedCrossRefGoogle Scholar
  27. Reynolds, B. A. and Weiss, S. (1992), Generation of neuron and astrocytes from isolated cells from the adult mammalian central nervous system. Science 255, 1707–1710.PubMedCrossRefGoogle Scholar
  28. Reynolds, B. A. and Weiss, S. (1996), Clonal and population analysis demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.PubMedCrossRefGoogle Scholar
  29. Suhonen, J. O., Peterson, A., Ray, J., and Gage, F. H. (1996), Differentiation of adult hippocampal-derived progenitors in olfactory neurons in vivo. Nature 383, 624–627.PubMedCrossRefGoogle Scholar
  30. Tohyama, T., Lee, V. M. Y., Rorke, L. B., Marvin, M., McKay, R. D. G., and Troyanovsky, J. O. (1992), Nestin expression in embryonic human neuroepithelium tumor cells. Lab. Invest. 66, 303–313.PubMedGoogle Scholar
  31. Vescovi, A. L., Parati, E. A., Gritti, A., Poulin, P., Ferrario, M., Wanke, E., Frolichsthal-Schoeller, P., Cova, L., Arcellana-Panlilio, M., Colombo, A., and Galli, R. (1999), Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation, Exp. Neurol. 156, 71–83.PubMedCrossRefGoogle Scholar
  32. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993), bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966.PubMedCrossRefGoogle Scholar
  33. Vescovi, A. L. and Snyder E. Y. (1999), Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 9, 569–598PubMedCrossRefGoogle Scholar
  34. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., and Reynold, B. A. (1996), Multipotent CNS stem-like cells are present in the adult mammalian spinal cord and ventricular nuraxis. J. Neurosci. 16, 7599–7609.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Angela Gritti
    • 1
  • Rossella Galli
    • 1
  • Angelo Luigi Vescovi
    • 1
  1. 1.Laboratory of Cellular NeurobiologyNational Neurological Institute C. BestaMilanItaly

Personalised recommendations