The Use of CLUSTAL W and CLUSTAL X for Multiple Sequence Alignment

  • Ashok Aiyar
Part of the Methods in Molecular Biology™ book series (MIMB, volume 132)

Abstract

Multiple protein and nucleic acid sequences are aligned for two principal purposes: to identify common motifs in sequences with a conserved biological function and to identify motifs in a newly characterized sequence that may provide insight into its biological functions. This is typically performed by scanning the newly identified sequence against a database.

References

  1. 1.
    Higgins, D. G. and Sharp, P. M. (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73, 237–244.PubMedCrossRefGoogle Scholar
  2. 2.
    Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput. Applic. Biosci. (now Bioinformatics) 5, 151–153.Google Scholar
  3. 3.
    Thompson, J. D., Higgins, D. G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight-matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.PubMedCrossRefGoogle Scholar
  5. 5.
    Feng, D.-F. and Doolittle, R. F. (1987) Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. Meth. Enzymol. 266, 368–382.CrossRefGoogle Scholar
  6. 6.
    Feng, D.-F. and Doolittle, R. F. (1996) Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. Meth. Enzymol. 266, 368–382.PubMedCrossRefGoogle Scholar
  7. 7.
    Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  8. 8.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput. Applic. Biosci. (now Bioinformatics) 10, 19–29.Google Scholar
  9. 9.
    Henikoff, S. and Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10, 915–10,919.CrossRefGoogle Scholar
  10. 10.
    Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. (1978) in Atlas of Protein Sequence and Structure, vol. 5, supplement 3 (Dayhoff, M. O., ed.), NBRF, Washington, DC, pp. 345–352.Google Scholar
  11. 11.
    Benner, S. A., Cohen, M. A., and Gonnet, G. H. (1994) Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng. 7, 1323–1332.PubMedCrossRefGoogle Scholar
  12. 13.
    Katz, R. A. and Jentoft, J. E. (1989) What is the role of the cys-his motif in retroviral nucleocapsid (NC) proteins? BioEssays 11, 176–181.CrossRefGoogle Scholar
  13. 14.
    Darlix, J. L,, Lapadat-Tapolsky, M., de Rocquigny, H., and Roques, B. P. (1995) First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol. 254, 523–537.PubMedCrossRefGoogle Scholar
  14. 15.
    Bairoch, A. and Boeckmann, B. (1991) The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 19, 2247–2248.PubMedCrossRefGoogle Scholar
  15. 16.
    Barker, W. C., George, D. G., Hunt, L. T., and Garavelli, J. S. (1991) The PIR protein sequence database. Nucleic Acids Res. 16, 1869–1871.Google Scholar
  16. 17.
    Pearson, W. R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.PubMedCrossRefGoogle Scholar
  17. 18.
    Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  18. 20.
    Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  19. 21.
    Felsenstein, J. (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Meth. Enzymol. 266, 418–427.PubMedCrossRefGoogle Scholar
  20. 22.
    Galtier, N., Gouy, M., and Gautier, C. (1996) SEA VIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. (now Bioinformatics) 12, 543–548.Google Scholar
  21. 23.
    Wilbur, W. J. and Lipman, D. J. (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80, 726–730.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Ashok Aiyar
    • 1
  1. 1.University of Wisconsin-MadisonMadison

Personalised recommendations