Epithelial Cell Culture Protocols pp 115-137

Part of the Methods In Molecular Medicine™ book series (MIMB, volume 188)

An In Vitro Model of Differentiated Human Airway Epithelia

Methods for Establishing Primary Cultures
  • Philip H. Karp
  • Thomas O. Moninger
  • S. Pary Weber
  • Tamara S. Nesselhauf
  • Janice L. Launspach
  • Joseph Zabner
  • Michael J. Welsh

Abstract

The human airway epithelium forms a barrier between the external and internal environments, separating air from the interstitial space. However, it also serves many other functions. By active transepithelial transport of electrolytes, it controls the composition and quantity of the airway surface liquid covering the epithelium. It secretes numerous agents into the airway surface liquid, including IgA and antimicrobial factors; these form part of the defensive shield that protects the airways and lungs from infection. The activity of its cilia are key to mucociliary clearance. The epithelium participates in the inflammatory response when challenged with environmental factors or infectious agents. It responds to and produces a number of cytokines and other pro- and antiinflammatory agents. To study and understand the complex and varied functions of human airway epithelia, investigators have developed cell culture models of the epithelium. Compared to in vivo studies, such models have the important advantage of flexibility, control of experimental conditions, and greater opportunities for intervention. They also allow the study of epithelial function in the absence of other cells and tissues such as macrophages, submucosal glands, fibroblasts, and cells of the immune system. Conversely, for some studies, the presence of nonepithelial cells and tissues would be advantageous.

References

  1. 1.
    Wheater, P. R., Burkitt, H. G., and Daniels, V. G. (1987) Respiratory system, p. 178–190. In Functional Histology. Churchill Livingston, London.Google Scholar
  2. 2.
    Thurston, R. J., Hess, R. A., Kilburn, K. H., and McKenzie, W. N. (1976) Ultra-structure of lungs fixed in inflation using a new osmium-fluorocarbon technique. J. Ultrastruct. Res. 56, 39–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Sims, D. E., Westfall, J. A., Kiorpes, A. L., and Horne, M. M. (1991) Preservation of tracheal mucus by nonaqueous fixative. Biotech. Histochem. 66, 173–180.PubMedCrossRefGoogle Scholar
  4. 4.
    Zabner, J., Smith, J. J., Karp, P. H., Widdicombe, J. H., and Welsh, M. J. (1998) Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol. Cell 2, 397–403.Google Scholar
  5. 5.
    Walters, R. W., Grunst, T., Bergelson, J. M., Finberg, R. W., Welsh, M. J., and Zabner, J. (1999) Basolateral localization of fiber receptors limits adenovirus infec-tion from the apical surface of airway epithelia. J. Biol. Chem. 274, 10219–10226.PubMedCrossRefGoogle Scholar
  6. 6.
    Drapkin, P. T., O’Riordan, C. R., Yi, S. M., Chiorini, J. A., Cardella, J., Zabner, J., and Welsh, M. J. (2000) Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia. J. Clin. Invest. 105, 589–596.PubMedCrossRefGoogle Scholar
  7. 7.
    Zabner, J., Seiler, M. P., Launspach, J. L., et al. (2000) The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc. Natl. Acad. Sci. U.S.A. 97, 11614–11619.PubMedCrossRefGoogle Scholar
  8. 8.
    Ferkol, T., Eckman, E. A., Swaidani, S., Silski, C., and Davis, P. (2000) Transport of bifunctional proteins across respiratory epithelial cells via the polymeric immunoglobulin receptor. Am. J. Respir. Crit. Care Med. 161, 944–951.PubMedGoogle Scholar
  9. 9.
    Smith, J. J., Travis, S. M., Greenberg, E. P., and Welsh, M. J. (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamaya, M., Finkbeiner, W. E., Chun, S. Y., and Widdicombe, J. H. (1992) Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262, L713–L724.PubMedGoogle Scholar
  11. 11.
    Wang, G., Slepushkin, V. A., Bodner, M., et al. (1999) Keratinocyte growth factor induced epithelial proliferation facilitates retroviral-mediated gene transfer to distal lung epithelia in vivo. J. Gene Med. 1, 22–30.Google Scholar
  12. 12.
    Cotton, C. U. and Reuss, L. (1996) Characterization of epithelial ion transport, p. 70–92. In Epithelial transport: a guide to methods and experimental analysis (Wils, N. K., Reuss, L. and Lewis, S. A., eds.). Chapman & Hall, London.Google Scholar
  13. 13.
    Lewis, S. A. (1996) Epithelial electrophysiology, p. 93–117. In Epithelial transport: a guide to methods and experimental analysis (Wills, N. K., Reuss, L. and Lewis, S. A., eds.). Chapman & Hall, London.Google Scholar
  14. 14.
    Zabner, J., Zeiher, B. G., Friedman, E., and Welsh, M. J. (1996) Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time. J. Virol. 70, 6994–7003.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Philip H. Karp
  • Thomas O. Moninger
  • S. Pary Weber
  • Tamara S. Nesselhauf
  • Janice L. Launspach
  • Joseph Zabner
  • Michael J. Welsh

There are no affiliations available

Personalised recommendations