Analysis of Transgenic Mice

  • Stefan Selbert
  • Dominic Rannie
Part of the Methods in Molecular Biology book series (MIMB, volume 180)


The first step in the analysis of potentially transgenic mice is the characterizaton of their altered genotype. A strategy must be devised that allows easy and reliable discrimination between wild-type animals and those carrying additional transgenes or introduced targeted mutations. It is also necessary to demonstrate that the characteristics of the alteration are as desired.


  1. 1.
    Mason, I. J., Murphy, D., Munke, M., Francke, U., Elliot, R. W., and Hogan, B. L. M. (1986) Developmental and transformation-sensitive expression of the Sparc gene on chromosome 11. EMBO J. 5, 1831–1837.PubMedGoogle Scholar
  2. 2.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  3. 3.
    Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acid Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  4. 4.
    Fuchs, R. and Cameron, G. N. (1995) Databases, computer networks, and molecular biology, in DNA Cloning 3, A Practical Approach (Glover, D. M. and Hames, B. D., eds.), IRL, NY, pp. 151–172.Google Scholar
  5. 5.
    Bickmore, B. (1995) Long-range restriction mapping, in DNA Cloning 3, A Practical Approach (Glover, D. M. and Hames, B. D., eds.), IRL, NY, pp. 182–188.Google Scholar
  6. 6.
    Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977) Labelling desoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251.PubMedCrossRefGoogle Scholar
  7. 7.
    Feinberg, A. P. and Vogelstein, B. (1984) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266, 267.PubMedGoogle Scholar
  8. 8.
    Lehrbach, H., Diamond, D., Wozney, J. M., and Boedtker, H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions: a critical reexamination. Biochemistry 16, 4743–4751.CrossRefGoogle Scholar
  9. 9.
    Chelly, J., Kaplan, J.-C., Maire, P., Gautron, S., and Kahn, A. (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature 333, 858–860.PubMedCrossRefGoogle Scholar
  10. 10.
    Newton, C. R. (1995) Mutational analysis: known mutations, in PCR 2, A Practical Approach (McPherson, M. J., Hames, B. D., and Taylor, G. R., eds.), IRL, NY, pp. 219–253.Google Scholar
  11. 11.
    Haase, A. T., Retzel, E. F., and Staskus, K. A. (1990) Amplification and detection of lentiviral DNA inside cells. Proc. Natl. Acad. Sci. USA 87, 4971–4975.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, R. H. and Fuggle, S. V. (1993) In situ cDNA polymerase chain reaction: a novel technique for detecting mRNA expression. Am. J. Pathol. 143, 1527–1534.PubMedGoogle Scholar
  13. 13.
    Komminoth, P. and Long, A. A. (1993) In situ polymerase chain reaction: an overview of methods, applications and limitations of a new molecular technique. Virchows Archiv B Cell Pathol. 64, 67–73.CrossRefGoogle Scholar
  14. 14.
    Long A. A., Komminoth, P., Lee, E., and Wolfe, H. J. (1993) Comparison of indirect and direct in-situ polymerase chain reaction in cell preparations and tissue sections. Histo chemistry 99, 151–162.Google Scholar
  15. 15.
    Komminoth, P., Merk, F. B., Leav, I., Wolfe, H. J., and Roth, J. (1992) Comparison of 35S-and digoxigenin-labelled RNA and oligonucleotide probes for in situ hybridization. Histo chemistry 98, 217–228.Google Scholar
  16. 16.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  17. 17.
    Spector, D. L., Goldman, R. D., and Leinwand, L. A. (1997) Cells, A Laboratory Manual, Vol. 1, Culture and biochemical analysis of cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 34.1–55.11.Google Scholar
  18. 18.
    Harlow, E. and Lane, D. (1988) Antibodies, A laboratory manual, Vol. 1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 421–470.Google Scholar
  19. 19.
    Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  20. 20.
    Beesley, J. E., ed. (1993) Immunocytochemistry, A Practical Approach, IRL, New York.Google Scholar
  21. 21.
    Gratzner, A. G. (1982) Monoclonal-antibody to 5-bromodeoxyuridine and 5-iododeoxyuridine—a new reagent for detection of DNA-replication. Science 218, 474, 2475.PubMedCrossRefGoogle Scholar
  22. 22.
    Selbert, S., Fischer, P., Pongratz, D., Stewart, M., and Noegel, A. A. (1995)Expression and localization of annexin VII (synexin) in muscle cells. J. Cell Sci. 108, 85–95.PubMedGoogle Scholar
  23. 23.
    Midgeley, C. A., White, S., Howitt, R., Save, V., Duμop, M. G., Hall, P. A., Lane, D. P., Wyllie, A. H., and Bubb, V. J. (1997) APC expression in normal human tissues. J. Pathol. 181, 426–433.CrossRefGoogle Scholar
  24. 24.
    Mason, L. Y. and Sammons, R. (1978) Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J. Clin. Pathol. 31,454–460.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell.Biol. 2, 1044–1051.PubMedGoogle Scholar
  26. 26.
    Rosenthal, N. (1987) Identification of regulatory elements of cloned genes with functional assays, in Methods in Enzymology, vol. 152 (Berger, S. L. and Kimmel, A. R., eds.), Academic, London, pp. 704–720.Google Scholar
  27. 27.
    Staμey, P. E. and Kricka, L. J., eds. (1991) Bioluminescence and Chemiluminescence:Current Status, John Wiley & Sons, NY.Google Scholar
  28. 28.
    Wood, K. V. (1995) Marker proteins for gene expression. Curr. Opin. Biotechnol. 6, 50–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Alton, N. K. and Vapnek, D. (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282, 864–869.PubMedCrossRefGoogle Scholar
  30. 30.
    Leslie, A. G. W., Moody, P. C. E., and Shaw, W. V. (1988) Structure of chloramphenicol acetyltransferase at 1.75 A resolution. Proc. Natl. Acad. Sci. USA 85,4133–4137.PubMedCrossRefGoogle Scholar
  31. 31.
    Shaw, W. V. (1975) Chloramphenicol acetyltransferase from chloramphenicolresistant bacteria in Methods in Enzymology, vol. 43 (Hash, J. H., ed.), Academic, London, pp. 737–755.Google Scholar
  32. 32.
    Folwer, A. V. and Zabin, I. (1983) Purification, structure and properties of hybrid β galactosidase proteins. J. Biol. Chem. 258, 14,354–14,358.Google Scholar
  33. 33.
    DeWet, J. R., Wood, K. V., Helinski, D. R., and Deluca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 7870–7873.CrossRefGoogle Scholar
  34. 34.
    DeWet, J. R., Wood, K. V., Deluca, M., Helinski, D. R., and Subramain, S. (1987) Firefly luciferase gene—structure and expression in mammalian cells. Mol. Cell.Biol. 7, 725–737.Google Scholar
  35. 35.
    Brasier, A. R., Tate, J. E., and Habener, J. F. (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques 7,1116–1122.PubMedGoogle Scholar
  36. 36.
    Wallace, R. B. and Miyada, C. G. (1987) Oligonucleotide probes for the screening of recombinant DNA libraries, in Methods in Enzymology, vol. 152 (Berger,S. L. and Kimmel, A. R., eds.), Academic, London, pp. 432–442Google Scholar
  37. 37.
    Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. D. (1989) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci. USA 85, 9436–9440.CrossRefGoogle Scholar
  38. 38.
    Kidd, K. K. and Ruano, G. (1995) Optimizing PCR, in PCR 2, A Practical Approach (McPherson, M. J., Hames, B. D., and Taylor, G. R., eds.), IRL, NY, p. 15.Google Scholar
  39. 39.
    Kidd, K. K. and Ruano, G. (1995) Optimising PCR, in PCR2, A Practical Approach (McPherson, M. J., Hames, B. D., and Taylor, G. R., eds.), IRL, NY, pp. 1–22.Google Scholar
  40. 40.
    Titus, D. E., ed. (1991) Promega, Protocols and Application Guide, Promega,Madison, WI.Google Scholar
  41. 41.
    Chomczynski, P. and Qasba, P. K. (1984) Alkaline transfer of DNA to plastic membrane. Biochem. Biophys. Res. Commun. 122, 340–344.PubMedCrossRefGoogle Scholar
  42. 42.
    Selden, R. F. (1991) Analysis of DNA sequences by blotting and hybridization,in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, J. G., Smith, J. A., and Struhl, K., eds.), vol. 1,Green Publishing Associates and Wiley-Interscience, New York, Section IV,Unit 2.9., pp. 2.9.1–2.9.17.Google Scholar
  43. 43.
    Walker, J. M., ed. (1984) Methods in Molecular Biology, Vol. 2: Nucleic Acids,Humana, Clifton, NJ.Google Scholar
  44. 44.
    Starling, J. (1994) A Guide to In Situ, Hybaid, Middlesex, UK.Google Scholar
  45. 45.
    Staecker, H., Cammer, M., Rubinstein, R., and Van De Water, T. R. (1994) A procedure for RT-PCR amplification of mRNAs on histological specimens.Biotechniques 16, 76–80.PubMedGoogle Scholar
  46. 46.
    Lewis, M. E., Sherman, T. G., and Watson, S. J. (1985) In Situ hybridization histochemistry with synthetic oligonucleotides: strategies and methods. Peptides 6(Suppl. 2), 75–87.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Stefan Selbert
    • 1
  • Dominic Rannie
    • 2
  1. 1.Mice and More GmbH and Co.HamburgGermany
  2. 2.Department of PathologyUniversity of Edinburgh Medical SchoolEdinburghUK

Personalised recommendations