Advertisement

Protein Blotting by the Semidry Method

  • Patricia Gravel
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Protein blotting involves the transfer of proteins to an immobilizing membrane. The most widely used blotting method is the electrophoretic transfer of resolved proteins from a polyacrylamide gel to a nitrocellulose or polyvinylidene difluoride (PVDF) sheet and is often referred to as ”Western blotting.“ Electrophoretic transfer uses the driving force of an electric field to elute proteins from gels and to immobilize them on a matrix. This method is fast, efficient, and maintains the high resolution of the protein pattern (1). There are currently two main configurations of electroblotting apparatus: (1) tanks of buffer with vertically placed wire (see  Chapter 39) or plate electrodes and (2) semidry transfer with flat-plate electrodes.

Keywords

Sodium Dodecyl Sulfate PVDF Membrane Transfer Buffer Electrophoretic Transfer Platelet Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Garfin, D. E. and Bers, G. (1982) Basic aspects of protein blotting, in Protein Blotting (Baldo B. A. and Tovey, E. R., eds.), Karger, Basel, Switzerland, pp. 5–42.Google Scholar
  2. 2.
    Gershoni, J. M. (1985) Protein blotting: developments and perspectives. TIBS 10, 103–106.Google Scholar
  3. 3.
    Eckerskorn, C., Strupat, K., Schleuder, D., Hochstrasser, D. F., Sanchez, J. C., Lottspeich, F., and Hillenkamp, F. (1997) Analysis of proteins by direct scanning-infrared-MALDI mass spectrometry after 2-D PAGE separation and electroblotting. Analyt. Chem. 69, 2888–2892.CrossRefGoogle Scholar
  4. 4.
    Beisiegel, U. (1986) Protein blotting. Electrophoresis 7, 1–18.CrossRefGoogle Scholar
  5. 5.
    Gershoni, J. M. and Palade, G. E. (1983) Protein blotting: principles and applications. Analyt. Biochem. 131, 1–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Towbin, H. and Gordon, J. (1984) Immunoblotting and dot immunobinding: current status and outlook. J. Immunol. Meth. 72, 313–340.CrossRefGoogle Scholar
  7. 7.
    Wilkins, M. R. and Gooley, A. A. (1997) Protein identification in proteome projects, in Proteomic Research: New Frontiers in Functional Genomics (Principles and Practice) (Wilkins, M. R., Williams, K. L., Appel, R. D., Hochstrasser, D. F., eds.), Springer Verlag, Berlin, pp. 35–64.Google Scholar
  8. 8.
    Gravel, P., Golaz, O., Walzer, C., Hochstrasser, D. F., Turler, H., and Balant, L. P. (1994) Analysis of glycoproteins separated by two-dimensional gel electrophoresis using lectin blotting revealed by chemiluminescence. Analyt. Biochem. 221, 66–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Sanchez, J. C., Ravier, F., Pasquali, C., Frutiger, S., Bjellqvist, B., Hochstrasser, D. F., and Hughes, G. J. (1992) Improving the detection of proteins after transfer to polyvinylidene difluoride membranes. Electrophoresis 13, 715–717.PubMedCrossRefGoogle Scholar
  10. 10.
    Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  11. 11.
    Erickson, P. F., Minier, L. N., and Lasher, R. S. (1982) Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: a method for their re-use in immunoautoradiographic detection of antigens. J. Immunol. Meth. 51, 241–249.CrossRefGoogle Scholar
  12. 12.
    Dunn, S.D. (1986) Effects of the modification of transfer buffer composition and the rena-turation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Analyt. Biochem. 157, 144–153.PubMedCrossRefGoogle Scholar
  13. 13.
    Bjerrum, O. J. and Schafer-Nielsen, C. (1986). Buffer systems and transfer parameters for semidry electroblotting with a horizontal apparatus, in Electrophoresis 1986 (Dunn, M. J., ed.) VCH, Weinheim, pp. 315–327.Google Scholar
  14. 14.
    Gershoni, J. M. and Palade, G. E. (1982) Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Analyt. Biochem. 124, 396–405.PubMedCrossRefGoogle Scholar
  15. 15.
    Jin, Y. and Cerletti, N. (1992) Western blotting of transforming growth factor b2. Optimization of the electrophoretic transfer. Appl. Theor. Electrophoresis 3, 85–90.Google Scholar
  16. 16.
    Matsudaira, P. J. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 21, 10,035–10,038.Google Scholar
  17. 17.
    Svoboda, M., Meuris, S., Robyn, C., and Christophe, J. (1985) Rapid electrotransfer of proteins from polyacrylamide gel to nitrocellulose membrane using surface-conductive glass as anode. Analyt. Biochem. 151, 16–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Kyhse-Andersen, J. J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Meth. 10, 203–209.PubMedCrossRefGoogle Scholar
  19. 19.
    Laurière, M. (1993) A semidry electroblotting system efficiently transfers both high and low molecular weight proteins separated by SDS-PAGE. Analyt. Biochem. 212, 206–211.PubMedCrossRefGoogle Scholar
  20. 20.
    Zeng, C., Suzuki, Y., and Alpert, E. (1990) Polyethylene glycol significantly enhances the transfer of membrane immunoblotting. Analyt. Biochem. 189, 197–201.PubMedCrossRefGoogle Scholar
  21. 21.
    Vachereau, A. (1989) Transparency of nitrocellulose membranes with Triton X-114. Electrophoresis 10, 524–527.PubMedCrossRefGoogle Scholar
  22. 22.
    Alimi, E., Martinage, A., Sautière, P., and Chevaillier, P. (1993) Electroblotting proteins onto carboxymethylcellulose membranes for sequencing. BioTechniques 15, 912–917.PubMedGoogle Scholar
  23. 23.
    Hauri, H. P. and Bucher, K. (1986) Immunoblotting with monoclonal antibodies: importance of the blocking solution. Analyt. Biochem. 159, 386–389.PubMedCrossRefGoogle Scholar
  24. 24.
    Rohringer, R. and Holden, D. W. (1985) Protein blotting: detection of proteins with colloidal gold, and of glycoproteins and lectins with biotin-conjugated and enzyme probes. Analyt. Biochem. 144, 118–127.PubMedCrossRefGoogle Scholar
  25. 25.
    Saravis, C. A. (1984) Improved blocking of nonspecific antibody binding sites on nitrocellulose membranes. Electrophoresis 5, 54–55.CrossRefGoogle Scholar
  26. 26.
    Batteiger, B., Newhall, W. J., and Jones, R. B. (1982) The use of tween-20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J. Immunol. Meth. 55, 297–307.CrossRefGoogle Scholar
  27. 27.
    Haycock, J. W. (1993) Polyvinylpyrrolidone as a blocking agent in immunochemical studies. Analyt. Biochem. 208, 397–399.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffman, W. L. and Jump, A. A. (1986) Tween-20 removes antibodies and other proteins from nitrocellulose. J. Immunol. Meth. 94, 191–196.CrossRefGoogle Scholar
  29. 29.
    Gravel, P., Sanchez, J. C., Walzer, C., Golaz, O., Hochstrasser, D. F., Balant, L. P., et al. (1995) Human blood platelet protein map established by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 16, 1152–1159.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Patricia Gravel
    • 1
  1. 1.Triskel Integrated ServicesGenevaSwitzerland

Personalised recommendations