Testing Meningococcal Vaccines for Mitogenicity and Superantigenicity

  • Alexei A. Delvig
  • John H. Robinson
  • Lee Wetzler
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 66)


Proteins with intrinsic mitogenic properties are widely represented in prokaryotes, such as in different Streptococcus species (1, 2, 3), Candida albicans (4), and Eikenella corrodens (5). Specifically, several bacterial porins of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium, Fusobacterium nucleatum, and pathogenic Neisseria species have been shown to induce nonspecific proliferation of lymphocytes (6, 7, 8, 9, 10, 11, 12).


Spleen Cell Complete RPMI Polyclonal Activation Antibiotic Medium Porin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferreira, P., Brás, A., Tavares, D., Vilanova, M., Ribeiro, A., Videira, A. and Arala-Chaves, M. P. (1997) Purification, and biochemical and biological characterization of an immunosuppressive and lymphocyte mitogenic protein secreted by Streptococcus sobrinus. Int. Immunol. 9, 1735–1743.CrossRefPubMedGoogle Scholar
  2. 2.
    Arala-Chaves, M. P., Ribeiro, A. S., Santarem, M. M., and Coutinho, A. (1986) Strong mitogenic effect for murine B lymphocytes of an immunosuppressor substance released by Streptococcus intermedius. Infect. Immun. 54, 543–548.PubMedGoogle Scholar
  3. 3.
    Santarem, M. M., Porto, M. T., Ferreira, P., Soares, R., and Arala-Chaves, M. P. (1987) Semi-purification of an immunosuppressor substance secreted by Streptococcus mutans that plays a role in the protection of the bacteria in the host. Scand. J. Immunol. 26, 755–761.CrossRefPubMedGoogle Scholar
  4. 4.
    Tavares, D., Salvador, A., Ferreira, P., and Arala-Chaves, M. P. (1993) Immunological activities of a Candida albicans protein which plays an important role in the survival of the microorganism in the host. Infect. Immun. 61, 1881–1888.PubMedGoogle Scholar
  5. 5.
    Proqulske, A., Mishell, R., Trummel, C., and Holt, S. C. (1984) Biological activities of Eikenella corrodens outer membrane and lipopolysaccharide. Infect. Immun. 43, 178–182.Google Scholar
  6. 6.
    Roy, S. and Biswas, T. (1996) Murine splenocyte proliferation by porin of Shigella dysenteriae type 1 and inhibition of bacterial invasion of HeLa cell by antiporin antibody. FEMS Microbiol. Lett. 141, 25–29.CrossRefPubMedGoogle Scholar
  7. 7.
    Vordermeier, H.-M. and Bessler, W. G. (1987) Polyclonal activation of murine B lymphocytes in vitro by Salmonella typhimurium porins. Immunobiology 175, 245–251.PubMedGoogle Scholar
  8. 8.
    Vordermeier, H.-M., Drexler, H., and Bessler, W. G. (1987) Polyclonal activation of human peripheral blood lymphocytes by bacterial porins and defined porin fragments. Immunol. Lett. 15, 121–126.CrossRefPubMedGoogle Scholar
  9. 9.
    Otsuka, J. (1986) Immunobiological activity of 41K protein (porin) derived from the cell envelope of Fusobacterium nucleatum. Nippon Shishubyo Gakkai Kaishi 28, 445–467.PubMedGoogle Scholar
  10. 10.
    Minetti, C. A. S. A., Tai, J. Y., Blake, M. S., Pullen, J. K., Liang, S. M., and Remeta, D. P. (1997) Structural and functional characterization of a recombinant PorB class 2 protein from Neisseria meningitidis. Conformational stability and porin activity. J. Biol. Chem. 272, 10,710–10,720.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, M. A., Friedman, A., Oliff, A. I., Tai, J., Martinez, D., Deck, R. R., et al. (1992) A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes. Proc. Natl. Acad. Sci. USA 89, 4633–4637.CrossRefPubMedGoogle Scholar
  12. 12.
    Ulmer, J. B., Burke, C. J., Shi, C., Friedman, A., Donnelly, J. J., and Liu, M. A. (1992) Pore formation and mitogenicity in blood cells by the class 2 protein of Neisseria meningitidis. J. Biol. Chem. 267, 19,266–19,271.PubMedGoogle Scholar
  13. 13.
    Melancon, J., Murgita, R. A., and DeVoe, I. W. (1983) Activation of murine B lymphocytes by Neisseria meningitidis and isolated meningococcal surface antigens. Infect. Immun. 42, 471–479.PubMedGoogle Scholar
  14. 14.
    Wetzler, L. M., Ho, Y., and Reiser, H. (1996) Neisserial porins induce B lymphocytes to express costimulatory B7-2 molecules and to proliferate. J. Exp. Med. 183, 1151–1159.CrossRefPubMedGoogle Scholar
  15. 15.
    Poolman, J. T. (1995) Development of a meningococcal vaccine. Infect. Agents Dis. 4, 13–28.PubMedGoogle Scholar
  16. 16.
    Fusco, P. C., Michon, F., Laude-Sharp, M., Minetti, C. A. S. A., Huang, C.-H., Heron, I., and Blake, M. S. (1998) Preclinical studies on a recombinant group B meningococcal porin as a carrier for a novel Haemophilus influenzae type b conjugate vaccine. Vaccine 16, 1842–1849.CrossRefPubMedGoogle Scholar
  17. 17.
    Arala-Chaves, M. P. (1992) Is prophylactic immunostimulation of the host against pathogenic microbial antigens an adequate strategy of immunoprotection? Scand. J. Immunol. 35, 495–500.CrossRefPubMedGoogle Scholar
  18. 18.
    Müller, A., Günther, D., Düx, F., Naumann, M., Meyer, T. F., and Rudel, T. (1999) Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J. 18, 339–352.CrossRefPubMedGoogle Scholar
  19. 19.
    Donnelly, J. J., Deck, R. R., and Liu, M. A. (1990) Immunogenicity of Haemophilus influenzae polysaccharide: Neisseria meningitidis outer membrane protein complex conjugate vaccine. J. Immunol. 145, 3071–3079.PubMedGoogle Scholar
  20. 20.
    Giebink, G. S., Koskela, M., Vella, P. P., Harris, M., and Le, C. T. (1993) Pneumococcal capsular polysaccharide-meningococcal outer membrane protein complex conjugate vaccines: immunogenicity and efficacy in experimental pneumococcal otitis media. J. Infect. Dis. 167, 347–355.PubMedGoogle Scholar
  21. 21.
    Paradiso, P. R. and Lindbberg, A. A. (1996) Glycoconjugate vaccines: future combinations. Dev. Biol. Stand. 87, 269–275.PubMedGoogle Scholar
  22. 22.
    Mackinnon, F. G., Ho, Y., Blake, M. S., Michon, F., Chandraker, A., Sayegh, M. H., and Wetzler, L. M. (1999) The role of B/T costimulatory signals in the immunopotentiating activity of Neisserial porin. J. Infect. Dis. 180, 755–761.CrossRefPubMedGoogle Scholar
  23. 23.
    Fusco, P. C., Michon, F., Tai, J. Y., and Blake, M. S. (1998) Preclinical evaluation of a novel group B meningococcal conjugate vaccine that elicits bactericidal activity in both mice and nonhuman primates. J. Infect. Dis. 175, 364–372.Google Scholar
  24. 24.
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Huffel, C. V., Du, X., et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.CrossRefPubMedGoogle Scholar
  25. 25.
    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.CrossRefPubMedGoogle Scholar
  26. 26.
    Poltorak, A., Smirnova, I., He, X., Liu, M. Y., van Huffel, C., McNally, O., et al. (1999) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 25, 78.CrossRefGoogle Scholar
  27. 27.
    Robinson, J. H., Pyle, G., and Kehoe, M. A. (1992) Influence of major histocompatibility complex haplotype on the mitogenic response of T cells to staphylococcal enterotoxin B. Infect. Immun. 59, 3667–3672.Google Scholar
  28. 28.
    Kleijmeer, M. J., Ossevoort, M. A., van Veen, C. J. H., van Hellemond, J. J., Neefjes, J. J., Kast, W. M., et al. (1995) MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells. J. Immunol. 154, 5715–5724.PubMedGoogle Scholar
  29. 29.
    Kruisbeek, A. M. (1994) In vitro assays for lymphocyte function, in Current Protocols in Immunology (Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., eds.), John Wiley and Sons, Inc., New York, pp. 3.0.1–3.19.7.Google Scholar
  30. 30.
    Calvin, F., Freeman, G. J., Razi-Wolf, Z., Hall, W. Jr., Benacerraf, B., Nadler, L., and Reiser, H. (1992) Murine B7 antigen provides a sufficient costimulatory signal for antigen-specific and MHC-restricted T cell activation. J. Immunol. 149, 3802–3808.Google Scholar
  31. 31.
    Li, H., Llera, A., Malchiodi, E. L., and Mariuzza, R. A. (1999) The structural basis of T cell activation by superantigens. Ann. Rev. Immunol. 17, 435–466.CrossRefGoogle Scholar
  32. 32.
    McConkey, D. J., Zhivotovsky, B., and Orrenius, S. (1996) Apoptosis: molecular mechanisms and biological implications. Mol. Aspects Med. 17, 1–110.CrossRefPubMedGoogle Scholar
  33. 33.
    FadoK, V. A., Warner, M. L., Bratton, D. L., and Henson, P. M. (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (α v β 3). J. Immunol. 161, 6250–6257.PubMedGoogle Scholar
  34. 34.
    Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C. (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184, 39–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Blake, M. S. and Gotschlich, E. C. (1982) Purification and partial characterization of the major outer membrane protein of Neisseria gonorrhoea. Infect. Immun. 36, 277–283.PubMedGoogle Scholar
  36. 36.
    Lytton, E. J. and Blake, M. S. (1986) Isolation and partial characterization of the reduction-modifiable protein of Neisseria gonorrhoea. J. Exp. Med. 164, 1749–1759.CrossRefPubMedGoogle Scholar
  37. 37.
    Wetzler, L. M., Blake, M. S., and Gotschlich, E. C. (1988) Characterization and specificity of antibodies to protein I of Neisseria gonorrhoeae produced by injection with various protein I-adjuvant preparations. J. Exp. Med. 168, 1883–1897.CrossRefPubMedGoogle Scholar
  38. 38.
    Wetzler, L. M., Gotschlich, E. C., Blake, M. S., and Koomey, J. M. (1989) The construction and characterization of Neisseria gonorrhoeae lacking protein III in its outer membrane. J. Exp. Med. 169, 2199–2209.CrossRefPubMedGoogle Scholar
  39. 39.
    Guttormsen, H.-K., Wetzler, L. M., and Solberg, C. O. (1994) Humoral immune response to class 1 outer membrane protein during the course of meningococcal disease. Infect. Immun. 62, 1437–1443.PubMedGoogle Scholar
  40. 40.
    Guttormsen, H.-K., Wetzler, L. M., and Næss, A. (1993) Humoral immune response to the class 3 outer membrane protein during the course of meningococcal disease. Infect. Immun. 61, 4734–4742.PubMedGoogle Scholar
  41. 41.
    Klugman, K. P., Gotschlich, E. C., and Blake, M. S. (1989) Sequence of the structural gene (rmpM) for the class 4 outer membrane protein of Neisseria meningitidis, homology of the protein to gonococcal protein III and Escherichia coli OmpA, and construction of meningococcal strains that lack class 4 protein. Infect. Immun. 57, 2066–2071.PubMedGoogle Scholar
  42. 42.
    Tommassen, J., Vermeij, P., Struyve, M., Benz, R., and Poolman, J. T. (1990) Isolation of Neisseria meningitidis mutants deficient in class 1 (PorA) and class 3 (PorB) outer membrane proteins. Infect. Immun. 58, 1355–1359.PubMedGoogle Scholar
  43. 43.
    Otten, G., Yokohoma, Y. M., and Holmes, K. L. (1994) Immunofluorescence and cell sorting, in Current Protocols in Immunology (Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., eds.), John Wiley and Sons, Inc., New York, pp. 5.0.1–5.8.8.Google Scholar
  44. 44.
    Bjune, G., Høiby, E. A., Grønnesby, J. K., Arnesen, O., Fredriksen, J. H., Halstensen, A., et al. (1991) Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338, 1093–1096.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Alexei A. Delvig
    • 1
  • John H. Robinson
    • 1
  • Lee Wetzler
    • 2
  1. 1.Department of Microbiology and ImmunologyNewcastle UniversityNewcastleUK
  2. 2.Evans Biomedical Research CenterBoston University School of MedicineBoston

Personalised recommendations