Preparation of 2-, 3-, and 4-Methylcarboxylic Acids and the Corresponding Alcohols of High Enantiopurity by Lipase-Catalyzed Esterification

  • Per Berglund
  • Erik Hedenström
Part of the Methods in Biotechnology book series (MIBT, volume 15)


Chiral methyl-branched carboxylic acids or the corresponding alcohols of high enantiomeric purity are valuable intermediates for the synthesis of many pharmaceuticals, pesticides, and natural substances such as phero-mones. Often, compounds of a very high enantiomeric excess (>99.5% ee) are needed. Various methyl-branched carboxylic acids have been synthesized by chemical methods such as diastereoselective alkylation of alkylamide enolates bearing a chiral auxiliary (1). However, a loss in enantiomeric excess of about 2% ee is often associated with the final hydrolytic removal of the chiral auxiliary to release the chiral alkylated acid. This has been noted, for instance, with the currently popular auxiliary pseudo-ephe-drine (2), and much work has been devoted to overcome this obstruction, albeit with limited success so far (3).


Immobilize Enzyme Enantiomeric Excess Alkanoic Acid Chiral Auxiliary Aqueous Sodium Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Högberg, H.-E. (1995) Alkylation of amide enolates, in Houben-Weiy Methods of Organic Chemistry, Vol. E21a, Stereoselective Synthesis (Helmchen G., Hoffmann, R. W., Mulzer, J., Schaumann, E., eds.),Thieme, Stuttgart, pp. 791–915.Google Scholar
  2. 2.
    Myers, A. G., Yang, B. H., Chen, H., and Gleason, J. L. (1994) Use of pseu-doephedrine as a practical chiral auxiliary for asymmetric synthesis. J. Am. Chem. Soc. 116, 9361,9362.Google Scholar
  3. 3.
    Myers, A. G., Yang, B. H., Chen. H., McKinstry, L., Kopecky, D. J., and Gleason, J. L. (1997) Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J. Am. Chem. Soc. 119, 6496–6511.CrossRefGoogle Scholar
  4. 4.
    Edlund, H., Berglund, P., Jensen, M., Hedenström, E., and Högberg, H.-E. (1996) Resolution of 2-methylalkanoic acids. Enantioselective esterification with long chain alcohols catalysed by Candida rugosa lipase. Acta Chem. Scand. 50, 666–671.CrossRefGoogle Scholar
  5. 5.
    Allen, C. F. and Kalm, M. J. (1963) 2-Methylenedodecanoic acid, in Organic Syntheses, coll. vol. IV (Rabjohn, R., ed.), Wiley, New York, p. 618, Note. 2.Google Scholar
  6. 6.
    Sonnet, P. E. and Baillargeon, M. W. (1989) Synthesis and lipase catalyzed hydrolysis of thiolesters of 2-, 3-, and 4-methyl octanoic acids. Lipids 24, 434–437.CrossRefGoogle Scholar
  7. 7.
    Dinh, P. M., Williams, J. M. J., and Harris, W. (1999) Selective racemisation of esters: relevance to enzymatic hydrolysis reactions. Tetrahedron Lett. 40, 749–752.CrossRefGoogle Scholar
  8. 8.
    Vörde, C., Högberg, H. E., and Hedenström, E. (1996) Resolution of 2-methyl-alkanoic esters: enantioselective aminolysisby (R)-1-phenylethylamine of ethyl 2-methyloctanoate catalysed by lipase B from Candida antarctica. Tetrahedron: Asymmetry 7, 1507–1513.CrossRefGoogle Scholar
  9. 9.
    Stecher, H. and Faber, K. (1997) Biocatalytic deracemizationt echniques: dynamic resolutions and stereoinversions. Synthesis 1–16.Google Scholar
  10. 10.
    Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggnink, A., and Zwanenburg, B. (1997) Controlled racemization of optically active organic compunds: prospects for asymmetric transformation. Tetrahedron 53, 9417–9476.CrossRefGoogle Scholar
  11. 11.
    Montero, S., Blanco, A., Virto, M. D., Landeta, L. C., Agud, I., Solozabal, R., et al. (1993) Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme Microb. Technol. 15, 239–247.CrossRefGoogle Scholar
  12. 12.
    Zaks, A. and Klibanov, A. M. (1985) Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 82, 3192–3196.CrossRefGoogle Scholar
  13. 13.
    Valivety, R. H., Halling, P. J., Peilow, A. D., and Macrae, A. R. (1992) Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochim. Biophys. Acta 1122, 143–146.CrossRefGoogle Scholar
  14. 14.
    Kvittingen, L., Sjursnes, B., Halling, P., and Anthonsen, T. (1992) Mixing conditions for enzyme catalysis in organic solvents. Tetrahedron 48, 5259–5264.CrossRefGoogle Scholar
  15. 15.
    Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987) Rules for optimization of biocatalysis inorganic solvents. Biotechnol. Bioeng. 30, 81–87.CrossRefGoogle Scholar
  16. 16.
    Carrea, G., Ottolina, G., and Riva, S. (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 13, 63–70; erratum: (1995) Trends Biotechnol. 13, 122.CrossRefGoogle Scholar
  17. 17.
    Berglund, P., Holmquist, M., Hult, K., and Högberg, H.-E. (1995) Alcohols as enantio selective inhibitors in a lipase in a lipase catalysed esterification of a chiral acyl donor. Biotechnol. Lett. 17, 55–60.CrossRefGoogle Scholar
  18. 18.
    Berglund, P., Holmquist, M., Hedenström, E., Hult, K., and Högberg, H.-E. (1993) 2-Methylalkanoic acids resolved by esterification catalysed by lipase from Candida rugosa: alcohol chain length and enantioselectivity. Tetrahedron: Asymmetry 4, 1869–1878.CrossRefGoogle Scholar
  19. 19.
    Berglund, P., Vörde, C., and Högberg, H.-E. (1994) Esterification of 2-methylalkanoic acids catalysed by lipase from Candida rugosa: enantioselectivity as a function of water activity and alcohol chain length. Biocatalysis 9, 123–130.CrossRefGoogle Scholar
  20. 20.
    Lundh, M., Smitt, O., and Hedenström, E., (1996) Sex pheromone of pine sawflies: enantioselective lipase catalysed transesterification of erythro-3,-dimethyl-pentadecan-2-ol, diprionol. Tetrahedron: Asymmetry 7, 3277–3284.CrossRefGoogle Scholar
  21. 21.
    Nguyen, B.-V. and Hedenström, E. (1999) Candida rugosa lipase as an enantioselective catalyst in the esterification of methyl branched carboxylic acids: Resolution of rac-3,7-dimethyl-6-octenic acid (citronellic acid). Tetrahedron: Asymmetry 10, 1821–1826.CrossRefGoogle Scholar
  22. 22.
    Halling, P. J. (1992) Salt hydrates for water activity control with biocatalysis in organic media. Biotechnol. Tech. 6, 271–276.CrossRefGoogle Scholar
  23. 23.
    Chen, C.-S., Fujimoto, Y., Girdaukas, G., Sih, C. J. (1982) Quantitative analysis of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299.CrossRefGoogle Scholar
  24. 24.
    Bergström, G., Wassgren, A.-B., Anderbrant, O., Fägerhag, J., Edlund, H., Hedenström, E., et al. (1995) Sex pheromone of the pine sawfly Diprion pini (Hymenoptera: Diprionidae): chemical identification, synthesis and biological activity. Experientia 51, 370–380.CrossRefGoogle Scholar
  25. 25.
    Rakels, J. L. L., Straathof, A. J. J., and Heijnen, J. J. (1993) A simple method to determine the enantiomeric ration in enantioselective biocatalysis. Enzyme Microb. Technol. 15, 1051–1056.CrossRefGoogle Scholar
  26. 26.
    Noyce, D. S. and Denney, D. B. (1950) Steric effects and stereochemistry of lithium aluminium hydride reduction. J. Am. Chem. Soc. 72, 5743–5745.CrossRefGoogle Scholar
  27. 27.
    Sonnet, P. E. (1982) Synthesis of the stereoisomers of the sex pheromone of the southern corn rootworm and lesser tea tortrix. J. Org. Chem. 47, 3793–3796.CrossRefGoogle Scholar
  28. 28.
    Sonnet, P. E. (1987) Kinetic resolutions of aliphatic alcohols with a fungal lipase from Mucormiehei.J. Org. Chem. 52, 3477–3479.CrossRefGoogle Scholar
  29. 29.
    Guanti, G., Narisano, E., Podgorski, T., Thea, S., and Williams, A. (1990) Enzyme catalyzed monohydrolysis of 2-aryl-1, 3-propanediol diacetates. A study of structural effects of the aryl moiety on the enantioselectivity. Tetrahedron 46, 7081–7092.CrossRefGoogle Scholar
  30. 30.
    Bowers, A., Halsall, T. G., Jones, E. R. H., and Lemin, A. J. (1953) The chemistry of the triterpenes and related compounds. Part XVIII. Elucidation of the structure of polyporenic acid C. J. Chem. Soc. 2548–2560.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Per Berglund
    • 1
  • Erik Hedenström
    • 2
  1. 1.Department of BiotechnologyRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Chemistry and Process TechnologyMid Sweden UniversitySundsvallSweden

Personalised recommendations