Celiac Disease pp 105-124 | Cite as

Studies of Gliadin-Specific T-Cells in Celiac Disease

  • øyvind Molberg
  • Stephen N. McAdam
  • Knut E. A. Lundin
  • Ludvig M. Sollid
Part of the Methods in Molecular Medicine book series (MIMM, volume 41)


Celiac disease is an immune-mediated disorder that primarily affects the small intestinal mucosa. It is one of the few human disorders of which it is possible, and ethically acceptable, to obtain samples from the disease-affected tissue. This chapter describes how small intestinal biopsy specimens are utilized for studies of cell-mediated immune responses in celiac disease. The focus is mainly on practical procedures for isolation, growth under sterile conditions, and subsequent analyses of gliadin-specific T-cells derived from the small biopsy specimens. This chapter also provides guidelines for the preparation of different gliadin antigens suitable for T-cell analysis. Note that most of the T-cell assays described necessitate serological and/or genomic HLA typing of the celiac disease patients from whom the T-cells are derived.


Celiac Disease Celiac Disease Patient Gliadin Protein Wheat Strain Proliferation Inhibition Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, T. R. (1977) In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104, 255–262.PubMedCrossRefGoogle Scholar
  2. 2.
    Arentz-Hansen, E. H., McAdam, S., Molberg, ø., Kristiansen, C, and Sollid, L. M. (2000) Production of a panel of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease. Gut 46, 46–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Sjöström, H., Lundin, K. E. A., Molberg, ø., Körner, R., Mcadam, S. N., Anthonsen, D., Quarsten, H., Norěn, O., Roepstorff, P., Thorsby, E., and Sollid, L. M. (1998) Identification of a gliadin T-cell epitope in coeliac disease: general importance of gliadin deamidation for intestinal T-cell recognition. Scand. J. Immunol. 48, 111–115.PubMedCrossRefGoogle Scholar
  4. 4.
    Browning, T. H. and Trier, J. S. (1969) Organ culture of mucosal biopsies of human small intestine. J. Clin. Invest. 48, 1423–1432.PubMedCrossRefGoogle Scholar
  5. 5.
    Lundin, K. E. A., Scott, H., Hansen, T., Paulsen, G., Halstensen, T. S., Fausa, O., Thorsby, E., and Sollid, L. M. (1993) Gliadin-specific, HLA-DQ(a1*0501, (31*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J. Exp. Med. 178, 187–196.PubMedCrossRefGoogle Scholar
  6. 6.
    Lundin, K. E. A., Scott, H., Fausa, O., Thorsby, E., and Sollid, L. M. (1994) T cells from the small intestinal mucosa of a DR4, DQ7/ DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum. Immunol. 41, 285–291.PubMedCrossRefGoogle Scholar
  7. 7.
    Molberg, ø., Kett, K., Scott, H., Thorsby, E., Sollid, L. M., and Lundin, K. E. A. (1997) Gliadin-specific HLA-DQ2 restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand. J. Immunol. 46, 103–109.CrossRefGoogle Scholar
  8. 8.
    Dooms, H., Desmedt, M., Vancaeneghem, S., Rottiers, P., Goossens, V., Fiers, W., and Grooten, J. (1998) Quiescence-inducing and antiapoptotic activities of IL-15 enhance secondary CD4+ T cell responsiveness to antigen. J. Immunol. 161, 2141–2150.PubMedGoogle Scholar
  9. 9.
    Yang, S. Y., Milford, E., Hammerling, U., and Dupont, B. (1987) The B-cell panel designed for the 10th International Histocompatibility Workshop, in Immunobiology of HLA (Dupont, B., ed.), Springer-Verlag, New York, pp. 11–19.Google Scholar
  10. 10.
    Frazer, A. C. (1959) Gluten-induced enteropathy, the effect of partially digested gluten. Lancet ii, 252–255.CrossRefGoogle Scholar
  11. 11.
    Maiuri, L., Picarelli, A., Boirivant, M., Coletta, S., Mazilli, M. C, De Vincenzi, M., Londei, M., and Auricchio, S. (1996) Definition of the initial immunologic modifications upon in vitro gliadin challenge in the small intestine of celiac patients. Gastroenterology 110, 1368–1378.PubMedCrossRefGoogle Scholar
  12. 12.
    Marsh, M. N. and Crowe, P. T. (1995) Morphology of the mucosal lesion in gluten sensitivity. Baillieres. Clin. Gastroenterol. 9, 273–293.PubMedCrossRefGoogle Scholar
  13. 13.
    Maiuri, L., Auricchio, S., Coletta, S., De Marco, G, Picarelli, A., Di Tola, M., Quaratino, S., and Londei, M. (1998) Blockage of T-cell costimulation inhibits T-cell action in celiac disease. Gastroenterology 115, 564–572.PubMedCrossRefGoogle Scholar
  14. 14.
    Nilsen, E. M., Jahnsen, F. L., Lundin, K. E. A., Johansen, F. E., Fausa, O., Sollid, L. M., Jahnsen, J., Scott, H., and Brandtzaeg, P. (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon-y in patients with celiac disease. Gastroenterology 115, 551–563.PubMedCrossRefGoogle Scholar
  15. 15.
    Troncone, R., Gianfrani, C, Mazzarella, G., Greco, L., Guardiola, J., Auricchio, S., and De Berardinis, P. (1998) Majority of gliadin-specific T-cell clones from celiac small intestinal mucosa produce interferon-y and interleukin-4. Dig. Dis. Sci. 43, 156–161.PubMedCrossRefGoogle Scholar
  16. 16.
    van de Wal, Y., Kooy, Y., van Veelen, P., Pena, S., Mearin, L., Papadopoulos, G., and Koning, F. (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161, 1585–1588.PubMedGoogle Scholar
  17. 17.
    van de Wal, Y., Kooy, Y. C, van Veelen, P. A., Pena, S. A., Mearin, L. M., Molberg, ø., Lundin, K. E. A., Sollid, L. M., Mutis, T., Benckhuijsen, W. E., Drijfhout, J. W., and Koning, F. (1998) Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc. Natl. Acad. Sci. USA 95, 10,050–10,054.PubMedCrossRefGoogle Scholar
  18. 18.
    Shewry, P. R., Tatham, A. S., and Kasarda, D. D. (1992) Cereal proteins and coeliac disease, in Coeliac Disease (Marsh, M. N., ed.), Blackwell Scientific, Oxford, UK, pp. 305–348.Google Scholar
  19. 19.
    Wieser, H. (1995) The precipitating factor in coeliac disease, in Coeliac Disease (Howdle, P. D., ed.), Bailliere Tindall, London, pp. 191–208.Google Scholar
  20. 20.
    Hamada, J. S. (1994) Deamidation of food proteins to improve functionality. Crit. Rev. Food Sci. Nutr. 34, 283–292.PubMedCrossRefGoogle Scholar
  21. 21.
    Halstensen, T. S., Scott, H., Fausa, O., and Brandtzaeg, P. (1993) Gluten stimulation of coeliac mucosa in vitro induces activation (CD25) of lamina propria CD4+ T cells and macrophages but no crypt-cell hyperplasia. Scand. J. Immunol. 38, 581–590.PubMedCrossRefGoogle Scholar
  22. 22.
    Arentz-Hansen, E. H., Körner, R., Molberg, ø., Quarsten, H., Vader, W., Kooy, Y., Lundin, K. E. A., Koning, F., Roepstorff, P., Sollid, L. M., and McAdam., S.(2000) The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med., in press.Google Scholar
  23. 23.
    Molberg, ø., Mcadam, S. N., Körner, R., Quarsten, H., Kristiansen, C, Madsen, L., Fugger, L., Scott, H., Noren, O., Roepstorff, P., Lundin, K. E. A., Sjöström, H., and Sollid, L. M. (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717.PubMedCrossRefGoogle Scholar
  24. 24.
    Aeschlimann, D. and Paulsson, M. (1994) Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb. Haemost. 71, 402–415.PubMedGoogle Scholar
  25. 25.
    Boirivant, M., Pica, R., DeMaria, R., Testi, R., Pallone, F., and Strober, W. (1996) Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis. J. Clin. Invest. 98, 2616–2622.PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller, D. L., Seiffert, S., Fang, W., and Behrens, T. W. (1996) Differential regulation of bcl-2 and bcl-x by CD3, CD28, and the IL-2 receptor in cloned CD4+ helper T cells: a model for the long-term survival of memory cells. J. Immunol. 156, 1764–1771.PubMedGoogle Scholar
  27. 27.
    Gordon, S., Clarke, S., Greaves, D., and Doyle, A. (1995) Molecular immuno-biology of macrophages: recent progress. Curr. Opin. Immunol. 7, 24–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Lundin, K. E. A., Sollid, L. M., and Thorsby, E. (1996) Class II restricted T cell function, in HLA and MHC: Genes, Molecules and Function (Browning, M. and McMichael, A., eds.), BIOS Scientific, Oxford, pp. 329–352.Google Scholar
  29. 29.
    Nilsen, E. M., Lundin, K. E., Krajci, P., Scott, H., Sollid, L. M., and Brandtzaeg, P. (1995) Gluten specific HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-γGut 37, 766–776.PubMedCrossRefGoogle Scholar
  30. 30.
    Lundin, K. E. A., Sollid, L. M., Anthonsen, D., Norěn, O., Molberg, ø., Thorsby, E., and Sjöström, H. (1997) Heterogeneous reactivity patterns of HLA-DQ-restricted, small intestinal T-cell clones from patients with celiac disease. Gastroenterology 112, 752–759.PubMedCrossRefGoogle Scholar
  31. 31.
    Pope, M., Betjes, M. G., Hirmand, H., Hoffman, L., and Steinman, R. M. (1995) Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic-T-cell conjugates. J. Invest. Dermatol. 104, 11–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Molberg, ø., Lundin, K. E. A., Nilsen, E. M., Scott, H., Kett, K., Brandtzaeg, P., Thorsby, E., and Sollid, L. M. (1998) HLA restriction patterns of gliadin-and astrovirus-specific CD4+ T cells isolated in parallel from the small intestine of celiac disease patients. Tissue Antigens 52, 407–415.PubMedCrossRefGoogle Scholar
  33. 33.
    Meinl, E., Hohlfeld, R., Wekerle, H., and Fleckenstein, B. (1995) Immortalization of human T cells by Herpesvirus saimiri. Immunol. Today 16, 55–58.PubMedCrossRefGoogle Scholar
  34. 34.
    Kouskoff, V., Signorelli, K., Benoist, C, and Mathis, D. (1995) Cassette vectors directing expression of T cell receptor genes in transgenic mice. J. Immunol. Methods 180, 273–280.PubMedCrossRefGoogle Scholar
  35. 35.
    Letourneur, F. and Malissen, B. (1989) Derivation of a T cell hybridoma variant deprived of functional T cell receptor α and βain transcripts reveals a nonfunctional alpha-mRNA of BW5147 origin. Eur. J. Immunol. 19, 2269–2274.PubMedCrossRefGoogle Scholar
  36. 36.
    Gjertsen, H. A., Sollid, L. M., Ek, J., Thorsby, E., and Lundin, K. E. A. (1994) T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR,-DQ, or-DP molecules. Scand. J. Immunol. 39, 567–574.PubMedCrossRefGoogle Scholar
  37. 37.
    Taswell, C. (1981) Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J. Immunol. 126, 1614–1619.PubMedGoogle Scholar
  38. 38.
    Gaudernack, G and Lundin, K. E. A. (1989) Rapid immunomagnetic phenotyping of cells. J. Immunogenet. 16, 169–175.PubMedCrossRefGoogle Scholar
  39. 39.
    Hansen, T., Lundin, K. E. A., Markussen, G, and Thorsby, E. (1992) T cell receptor usage by HLA-DQw8-specific T cell clones. Int. Immunol. 4, 931–934.PubMedCrossRefGoogle Scholar
  40. 40.
    Frohmann, M. A. (1990) RACE: rapid amplification of cDNA ends, in PCR Protocols (Innis, M. A., Gelfand, D. H., and Sninsky, J. J., eds.), Academic, San Diego, pp. 28–32.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • øyvind Molberg
    • 1
  • Stephen N. McAdam
    • 1
  • Knut E. A. Lundin
    • 2
  • Ludvig M. Sollid
    • 3
  1. 1.Institute of ImmunologyRikshospitalet,University of OsloOsloNorway
  2. 2.Institute of ImmunologyRikshospitalet,University of Oslo and Department of MedicineUllevaal sykehus, OsloNorway
  3. 3.Institute of Transplantation ImmunologyRikshospitalet,University of OsloOsloNorway

Personalised recommendations