Electrical Impedance Spectroscopy for Rapid and Noninvasive Analysis of Skin Electroporation
Abstract
Transient disruption of skin’s barrier properties using high-voltage pulses involves complex changes in skin microstructure believed to be due to electroporation. Electroporation of cell membranes is a well known phenomenon which has found extensive use as a method of DNA transfection in biological laboratories (1, 2, 3). More recently, it has been shown that the multilamellar lipid bilayer membranes found in skin can also be electroporated (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17). The dramatic and reversible increases in skin permeability caused by electroporation indicate that drugs might be delivered transdermally at significantly enhanced rates. Especially for macromolecules, such as protein- and gene-based drugs, electroporation-mediated transdermal drug delivery could be an important pharmaceutical approach.
Keywords
Stratum Corneum Skin Resistance Outer Electrode Skin Impedance Viable EpidermisReferences
- 1.Bouwstra, J.-A., Gooris, G. S., Weerheim, A., Kempenaar, J., and Ponec, M. (1995) Characterization of stratum corneum structure in reconstructed epidermis by X-ray diffraction. J. Lipid Res. 36, 496–504.PubMedGoogle Scholar
- 2.Weaver, J. C. and Chizmadzhev, Y. A. (1996) Electroporation, in CRC Handbook of Biological Effects of Electromagnetic Fields (Polk, C. and Postow, E., eds.), CRC Press, Boca Raton, FL, pp. 247–274.Google Scholar
- 3.Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (1992) Guide to Electroporation and Electrofusion, Academic Press, New York.Google Scholar
- 4.Chizmadzhev, Y. A., Zarnitsin, V. G., Weaver, J. C., and Potts, R. O. (1995) Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophys. J. 68, 749–765.PubMedCrossRefGoogle Scholar
- 5.Pliquett, U., Zewert, T. E., Chen, T., Langer, R., and Weaver, J. C. (1996) Imaging of fluorescent molecule and small ion transport through human stratum corneum during high-voltage pulsing: Localized transport regions are involved. Biophys. Chem. 58, 185–204.PubMedCrossRefGoogle Scholar
- 6.Vanbever, R., Lecouturier, N. and Preat, V. (1994) Transdermal delivery of metoprolol by electroporation. Pharmacol. Res. 11, 1657–1662.CrossRefGoogle Scholar
- 7.Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C. (1993) Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA, 90, 10,504–10,508.PubMedCrossRefGoogle Scholar
- 8.Moghimi, H. R., Williams, A. C., and Barry, B. W. (1996) A lamellar matrix model for stratum corneum intercellular lipids. I. Characterisation and comparison with stratum corneum intercellular structure. Int. J. Pharmacol. 131, 103–115.CrossRefGoogle Scholar
- 9.Champion, R. H., Burton, J. L., and Ebling, F. J. G. (1992) Textbook of Dermatology, Blackwell Scientific, London.Google Scholar
- 10.Vanbever, R., Fouchard, D., Jodoul, A., de Morre, N., Preat, V., and Marty, J.-P. (1998) In vivo noninvasive evaluation of hairless rat skin after high-voltage pulse exposure. Skin Pharmacol. 11, 23–34.CrossRefGoogle Scholar
- 11.Jadoul, A., Regnier, V., Duocet, J., and Preat, V. (1997) X-ray-scattering analysis of the stratum corneum treated by high voltage pulses. Pharmacol. Res. 14, 1275–1277.CrossRefGoogle Scholar
- 12.Jadoul, A., Tanajo, H., Preat, V., Spies, F., and Bodde, H. E. (1998) Electroperturbation of human stratum corneum fine structure by high voltage pulses: A freeze fracture electron microscopy and differnetial thermal analysis. J. Invest. Dermatol. Symp. Proc. 3, 153–158.Google Scholar
- 13.Prausnitz, M. R., Gimm, J. A., Guy, R. H., Langer, R., Weaver, J. C., and Cullander, C. (1996) Imaging regions of transport across human stratum corneum during high voltage and low voltage exposures. J. Pharm. Sci. 85, 1363–1370.PubMedCrossRefGoogle Scholar
- 14.Nicander, I., Ollmar, S., Rozell, B. L., Eek, A., and Emtestam, L. (1995) Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br. J. Dermatol. 132, 718–724.PubMedCrossRefGoogle Scholar
- 15.Kontturi, K., Murtomaki, L., Hirvonen, J., Paronen, P., and Urtti, A. (1993) Electrochemical characterization of human skin by impedance spectroscopy: The effect of penetration enhancers. Pharmacol. Res. 10, 381–385.CrossRefGoogle Scholar
- 16.Emtestam, L. and Ollmar, S. (1993) Electrical impedance index in human skin: Measurements after occlusion, in 5 anatomical regions and in mild irritant contact dermatitis. Contact Dermatitis 28, 104–108.PubMedCrossRefGoogle Scholar
- 17.Nicander, I., Ollmar, S., Eek, A., Lundh Rozell, B., and Emtestam, L. (1996) Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. Br. J. Dermatol. 134, 221–228.PubMedCrossRefGoogle Scholar
- 18.Ollmar, S., Eek, A., Sundstrom, F., and Emtestam, L. (1995) Electrical impedance for estimation of irritation in oral mucosa and skin. Med. Prog. Technol. 21, 29–37.PubMedGoogle Scholar
- 19.Kalia, Y. N., Nonato, L. B., and Guy, R. H. (1996) The effect of iontophoresis on skin barrier integrity: Non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharmacol. Res. 13, 957–960.CrossRefGoogle Scholar
- 20.Craane van Hinsberg, W. H. M., Verhoef, J. C., Junginger, H. E., and Bodde, H. E. (1997) Electroperturbation of the human skin barrier in vitro (I): The influence of current density on the thermal behaviour of skin impedance. Eur. J. Pharm. Biopharm. 43, 43–50.CrossRefGoogle Scholar
- 21.Pliquett, U., Langer, R., and Weaver, J. C. (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim. Biophys. Acta 1239, 111–121.PubMedCrossRefGoogle Scholar
- 22.Prausnitz, M. R., Lee, C. S., Liu, C. H., Pang, J. C., Singh, T. P., Langer, R., and Weaver, J. C. (1996) Transdermal transport efficiency during skin electroporation and iontophoresis. J. Controlled Release 38, 205–217.CrossRefGoogle Scholar
- 23.Foster, K. R. and Schwan, H. P. (1989) Dielectric properties of tissues and biological materials: A critical review. CRC Crit. Rev. Biomed. Eng. 17, 25–104.Google Scholar
- 24.McDonald, J. R. (1992) Impedance Spectroscopy. Ann. Biomed. Eng. 20, 289–305.CrossRefGoogle Scholar
- 25.Burnette, R. R. and DeNuzzio, J. D. (1997) Impedance spectroscopy: Applications to human skin, in Mechanisms of Transdermal Drug Delivery (Potts, R. O. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 215–230.Google Scholar
- 26.Potts, R. O., Francoeur, M. L., and Guy, R. H. (1992) Routes of ionic permeability through mammalian skin. Solid State Ionics 53-56, 165–169.CrossRefGoogle Scholar
- 27.Bodde, H. E., Kruithof, M. A. M., Brussee, J., and Koerten, H. K. (1989) Visualisation of normal and enhanced HgCl2 transport through human skin in vitro. Int. J. Pharm. 53, 13–24.CrossRefGoogle Scholar
- 28.Elias, P. M. (1988) Structure and function of the stratum corneum permeability barrier. Drug Dev. Res. 13, 97–105.CrossRefGoogle Scholar
- 29.Elias, P. M. and Menon, G. K. (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. J. Adv. Lipid Res. 24, 1–26.Google Scholar
- 30.Craane van Hinsberg, W. H. M., Bax, L., Flinterman, N. H., Verhoef, J. C., Junginger, H. E., and Bodde, H. E. (1994) Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis protocol, pH, and ionic strength on peptide flux and skin impedance. Pharmacol. Res. 11, 1296–1300.CrossRefGoogle Scholar
- 31.Gersing, E., Hofmann, B., and Osypka, M. (1996) Influence of changing peripheral geometry on electrical impedance tomography measurements. Med. Biol. Eng. Comput. 34, 359–361.PubMedCrossRefGoogle Scholar
- 32.Pliquett, U. and Weaver, J. C. (1996) Electroporation of human skin: Simultaneous measurement of changes in the transport of two fluorescent molecules and in the passive electrical properties. Bioelectrochem. Bioenerg. 39, 1–12.CrossRefGoogle Scholar
- 33.Schwan, H. P. (1963) Determination of biological impedances. Phys. Tech. Biol. Res. 6, 323–407.Google Scholar
- 34.Stanley, W. D. (1982) Electronic Communications Systems. Reston Publishing, Reston, VA.Google Scholar
- 35.Jong, M. T. (1982) Methods of Discrete Signal and System Analysis. McGrawHill, New York.Google Scholar
- 36.Horowitz, J. C. and Hill, F. R. (1980) The Art of Electronics. Cambridge University Press, Cambridge, UK.Google Scholar
- 37.Gummer, C. L. (1989) The in vitro evaluation of transdermal delivery, in Transdermal Drug Delivery: Development Issues and Research Initiatives (Hadgraft, J. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 177–186.Google Scholar
- 38.Kasting, G. G. and Bowman, L. A. (1990) Electrical analysis of fresh excised human skin: A comparison with frozen skin. Pharmacol. Res. 7, 1141–1146.CrossRefGoogle Scholar
- 39.Tanojo, H., Roemele, P. E. H., Van Veen, G. H., Stieltjes, H., Junginger, H. E., and Bodde, H. E. (1997) New design of a flow-through permeation cell for studying in vitro permeation studies across biological membranes. Controlled Release 45, 41–47.CrossRefGoogle Scholar
- 40.Pliquett, U. and Gusbeth, C., Calcein as model for hydrophilic drugs, manuscript under review.Google Scholar
- 41.Martin, G. T., Pliquett, U., and Weaver, J. C., Temperature rising during tissue electroporation: Theoretical modeling, manuscript under review.Google Scholar
- 42.Pliquett, U. and Weaver, J. C., Passive electrical properties of human stratum corneum during application of electric fields, in Electricity and Magnetism in Medicine and Biology (Bersani, F., ed.), in press.Google Scholar
- 43.Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992) Numerical Recipes in Pascal. Cambridge University Press, Cambridge, UK.Google Scholar
- 44.Atkins, P. W. (1995) Physical Chemistry. Oxford University Press, Oxford, UK.Google Scholar