Rotaviruses pp 67-77 | Cite as

Rotavirus Entry into Tissue Culture Cells

  • Joanna M. Gilbert
  • Harry B. Greenberg
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 34)


Rotavirus (RV) is a triple-protein-layered icosahedral virus, for which studies have established that the two outer-layer proteins, viral protein 4 (VP4) and viral protein 7 (VP7), are required for viral infectivity (1,2). VP7, a glycoprotein, is the major component of the outer-layer, but its role in viral entry is unclear. VP4 forms dimers extending out from the VP7-coated viral surface (3,4) and have been shown to be a determinant of host range and virulence, and is directly involved in cell attachment and RV entry into cells (5, 6, 7, 8). Proteolytic cleavage of VP4 into two noncovalently associated subunits, VP8* and VP5* (2,9,10), significantly enhances viral infectivity (11, 12, 13).


Viral Entry Chloromethyl Ketone African Green Monkey Kidney Cell Entry Assay Green Monkey Kidney Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bridger, J. C. and Woode, G. N. (1976) Characterization of two particle types of calf rotavirus. J. Gen. Virol. 31, 245–250.CrossRefPubMedGoogle Scholar
  2. 2.
    Estes, M. K., Graham, D. Y., Smith, E. M., and Gerba, C. P. (1979) Rotavirus stability and inactivation. J. Gen. Virol. 43, 403–409.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasad, B. V. V., Burns, J. W., Marietta, E. Estes, M. K., and Chiu, W. (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343, 476–479.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaw, A. L., Rothnagel, R., Chen, D., Ramig, R. F., Chiu, W., and Prasad, B. V. V. (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701.CrossRefPubMedGoogle Scholar
  5. 5.
    Greenberg, H. B., Flores, J., Kalica, A. R., Wyatt, R. G., and Jones, R. (1983) Gene coding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. J. Gen. Virol. 64, 313–320.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaljot, K. T., Shaw, R. D., Rubin, D. H., and Greenberg, H. B. (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 62, 1136–1144.PubMedGoogle Scholar
  7. 7.
    Offit, P. A., Blavat, G., Greenberg, H. B., and Clark, H. F. (1986) Molecular basis of rotavirus virulence: role of gene segment 4. J. Virol. 57, 46–49.PubMedGoogle Scholar
  8. 8.
    Ruggeri, F. M. and Greenberg, H. B. (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol. 65, 2211–2219.PubMedGoogle Scholar
  9. 9.
    Espejo, R. T., Lopez, S., and Arias, C. (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J. Virol. 37, 156–160.PubMedGoogle Scholar
  10. 10.
    Lopez, S., Arias, C. F., Bell, J. R., Strauss, J. H., and Espejo, R. T. (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144, 11–19.CrossRefPubMedGoogle Scholar
  11. 11.
    Babiuk, L. A., Mohammed, K., Spence, L., Fauvel, M., and Petro, R. (1977) Rotavirus isolation and cultivation in the presence of trypsin. J. Clin. Microbiol. 6, 610–617.PubMedGoogle Scholar
  12. 12.
    Barnett, B. B., Spendlove, R. S., and Clark, M. L. (1979) Effect of enzymes on rotavirus infectivity. J. Clin. Microbiol. 10, 111–113.PubMedGoogle Scholar
  13. 13.
    Clark, S. M., Roth, J. R., Clark, M. L., Barnett, B. B., and Spendlove, R. S. (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J. Virol. 39, 816–822.PubMedGoogle Scholar
  14. 14.
    Fukuhara, N., Yoshie, O., Kitaoka, S., and Konno, T. (1988) Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J. Virol. 62, 2209–2218.PubMedGoogle Scholar
  15. 15.
    Nandi, P., Charpilienne, A., and Cohen, J. (1992) Interaction of rotavirus particles with liposomes. J. Virol. 66, 3363–3367.PubMedGoogle Scholar
  16. 16.
    Ruiz, M. C., Alonso, T. S., Charpilienne, A., Vasseur, M., Michelangeli, F., Cohen, J., and Alvarado, F. (1994) Rotavirus interaction with isolated membrane vesicles. J. Virol. 68, 4009–4016.PubMedGoogle Scholar
  17. 17.
    Falconer, M. M., Gilbert, J. M., Roper, A. M., Greenberg, H. B., and Gavora, J. S. (1995) Rotavirus-induced fusion-from-without in tissue culture cells. J. Virol. 69, 5582–5591.PubMedGoogle Scholar
  18. 18.
    Carrasco, L. (1994) Entry of animal viruses and macromolecules into cells. FEBS Lett. 350, 151–154.CrossRefPubMedGoogle Scholar
  19. 19.
    Cuadras, M. A., Arias, C. F., and Lopez, S. (1997) Rotaviruses induce an early membrane permabilization of MA104 cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J. Virol. 71, 9065–9074.PubMedGoogle Scholar
  20. 20.
    Liprandi, F., Moros, Z., Gerder, M., Ludert, J. E., Pujol, F. H., Ruiz, M. C., Michelangeli, F., Charpilienne, A., and Cohen, J. (1997) Productive penetration of rotavirus in cultured cells induces coentry of the translation inhibitor α-sarcin. Virology 237, 430–438.CrossRefPubMedGoogle Scholar
  21. 21.
    Brigotti, M., Rambelli, F., Zamboni, M., Montanaro, L., and Sperti, L. (1989) Effect of α-sarcin and ribosome-inactivating proteins on the interaction of elongation factos with ribosomes. Biochem. J. 257, 723–727.PubMedGoogle Scholar
  22. 22.
    Endo, Y. and Wool, I. G. (1982) The site of action of α-sarcin on eukaryotic ribosome. J. Biol. Chem. 257, 9054–9060.PubMedGoogle Scholar
  23. 23.
    Gilbert, J. M. and Greenberg, H. B. (1997) Virus-like particle induced fusion-from-without in tissue culture cells; role of outer-layer proteins VP4 and VP7. J. Virol. 71, 4555–4563.PubMedGoogle Scholar
  24. 24.
    Crawford, S. E., Labbé, M., Cohen, J., Burroughs, M. H., Zhou, Y. J., and Estes, M. K. (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68, 5915–5922.Google Scholar
  25. 25.
    Gilbert, J. M. and Greenberg, H. B. (1998) Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion-from-without. J. Virol. 72, 5323–5327.PubMedGoogle Scholar
  26. 26.
    Mackow, E. R., Shaw, R. D., Matsui, S. M., Vo, P. T., Dang, M.-N., and Greenberg, H. B. (1988) The rhesus rotavirus gene encoding protein VP3: Location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc. Natl. Acad. Sci. USA 85, 645–649.CrossRefPubMedGoogle Scholar
  27. 27.
    Buckland, R. and Wild, F. (1989) Leucine zipper motif extends. Nature 338, 547–548.CrossRefPubMedGoogle Scholar
  28. 28.
    Mendez, E., Arias, C. F., and Lopez, S. (1996) Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J. Virol. 70, 1218–1222.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Joanna M. Gilbert
    • 1
  • Harry B. Greenberg
    • 1
  1. 1.Stanford University School of MedicineStanford

Personalised recommendations