Diagnostic and Therapeutic Antibodies pp 243-266

Part of the Methods in Molecular Medicine book series (MIMM, volume 40)

From Laboratory to Clinic

The Story of CAM PA TH-1
  • Geoff Hale
  • Herman Waldmann

Abstract

In 1890 it was shown that resistance to diphtheria toxin could be transferred from one animal to another by transfer of serum (1). From this discovery, passive antibody therapy was developed as an effective treatment for infectious diseases and for neutralization of toxins, and continues to be used to this day. Meanwhile, there have been continued efforts to use antibodies for cancer therapy, starting with the pioneering work of Hericourt and Richet in 1895 (2), which was the forerunner of the “magic bullet” concept. However, all of the early work on tumor therapy led ultimately to disappointment (3). The problems were readily acknowledged, i.e., lack of specificity and reproducibility, lack of purity, and the xenogeneic immune response. Developments over the past 20 years, as described throughout this book, have effectively overcome all of these technical problems, often in very ingenious ways. The difficulty we have now is different. There are just too many potential new antibody-based treatments for them all to be properly evaluated in the clinic. Many will still fail because of factors that are hard to predict from experiments: unexpected toxicity, biological heterogeneity of the target disease, or lack of access to the appropriate tissue.

References

  1. 1.
    von Behring, E. and Kitasato, S. (1890) Dtsch. Med. Wochenshe. 16, 1113–1114.CrossRefGoogle Scholar
  2. 2.
    Hericourt, J. and Richet, C. (1895) “Physologie Pathologique”-de la serotherapie dans la traitement du cancer. Comptes Rendus Hebd. Seanc. Acad. Sci. 121, 567.Google Scholar
  3. 3.
    Currie, G. A. (1972) Eighty years of immunotherapy: a review of immunological methods used for the treatment of human cancer. Br. J. Cancer 26, 141–153.CrossRefPubMedGoogle Scholar
  4. 4.
    Prentice, H. G., Blacklock, H. A., Janossy, G., Bradstock, K. F., Skeggs, D., Goldstein, G., and Hoffbrand, A. V. (1982) Use of anti-T cell monoclonal antibody OKT3 to prevent acute graft versus host disease in allogeneic bone marrow transplantation for acute leukemia. Lancet 1, 700–703.CrossRefPubMedGoogle Scholar
  5. 5.
    Filipovitch, A. H., Vallera, D. A., Youle, R. J., Haake, R., Blazar, B. R., Arthur, D., Neville, Ramsay, N. K., McGlave, P., and Kersey, J. H. (1987) Graft-versus-host disease prevention in allogeneic bone marrow transplantation from histo-compatible siblings. A pilot study using immunotoxins for T cell depletion of donor bone marrow. Transplantation 44, 62–69.CrossRefGoogle Scholar
  6. 6.
    Clark, M., Cobbold, S., Hale, G., and Waldmann, H. (1983) Advantages of rat monoclonal antibodies. Immunol. Today 4, 100–101.CrossRefGoogle Scholar
  7. 7.
    Hale, G., Bright, S., Chumbley, G., Hoang, T., Metcalf, D., Munro, A. J., and Waldmann, H. (1983) Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 62, 873–882. 263PubMedGoogle Scholar
  8. 8.
    Hale, G., Hoang, T., Prospero, T., Watt, S. M., and Waldmann, H. (1983) Removal of T cells from bone marrow for transplantation: comparison of rat monoclonal anti-lymphocyte antibodies of different isotypes. Mol. Biol. Med. 1, 305–319.PubMedGoogle Scholar
  9. 9.
    Hale, G., Swirsky, D. M., Hayhoe, F. G. J., and Waldmann, H. (1983) Effects of monoclonal anti-lymphocyte antibodies in vivo in monkeys and humans. Mol. Biol. Med. 1, 321–334.PubMedGoogle Scholar
  10. 10.
    Waldmann, H., Or, R., Hale, G., Weiss, L., Cividalli, G., Samuel, S., Manor, D., Brautbar, C., Polliack, A., Rachmilewitz, E. A., and Slavin, S. (1984) Elimination of graft versus host disease by in vitro depletion of alloreactive lymphocytes using a monoclonal rat anti-human lymphocyte antibody (CAMPATH-1). Lancet 2, 483–486.CrossRefPubMedGoogle Scholar
  11. 11.
    Heit, W., Bunjes, D., Weisneth, M., Schmeiser, T., Arnold, R., Hale, G., Waldmann, H., and Heimpel, H. (1986) Ex vivo T-cell depletion with the monoclonal antibody Campath-1 plus human complement effectively prevents acute GvHD in allogeneic bone marrow transplantation. Br. J. Haematol. 64, 479–486.CrossRefPubMedGoogle Scholar
  12. 12.
    Goldman, J. M., Apperley, J. F., Jones, L., Marcus, R., Goolden, A. W. G., Batchelor, R., Hale, G., Waldmann, H., Reid, C. D., Hows, J., Gordon-Smith, E., Catovsky, D., and Galton, D. A. G. (1986) Bone marrow transplantation for patients with chronic myeloid leukemia. New Engl. J. Med. 314, 202–207.CrossRefPubMedGoogle Scholar
  13. 13.
    Hale, G., Cobbold, S., and Waldmann, H. (1988) T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation 45, 753–759.CrossRefPubMedGoogle Scholar
  14. 14.
    Cobbold, S. P., Thierfelder, S., and Waldmann, H. (1983) Immunosuppression with monoclonal antibodies: a model to determine the rules for effective serotherapy. Mol. Biol. Med. 1, 285–304.PubMedGoogle Scholar
  15. 15.
    Cobbold, S. P., Martin, G., and Waldmann, H. (1986) Monoclonal antibodies for the prevention of graft-versus-host disease and marrow graft rejection: the depletion of T-cell subsets in vitro and in vivo. Transplantation 42, 239–247.CrossRefPubMedGoogle Scholar
  16. 16.
    Hale, G., Clark, M., and Waldmann, H. (1985) Therapeutic potential of rat monoclonal antibodies: isotype specificity of antibody-dependant cell-mediated cytotoxicity with human lymphocytes. J. Immunol. 134, 3056–3061.PubMedGoogle Scholar
  17. 17.
    Bruggemann, M., Free, J., Diamond, A., Howard, J., Cobbold, S. P., and Waldmann, H. (1986) Immunoglobulin heavy chain locus of the rat: striking homology to mouse antibody genes. Proc. Natl. Acad. Sci. USA 83, 6075–6079.CrossRefPubMedGoogle Scholar
  18. 18.
    Hale, G., Cobbold, S. P., Waldmann, H., Easter, G., Matejtschuk, P., and Coombs, R. R. A. (1987) Isolation of low-frequency class-switch variants from rat hybrid myelomas. J. Immunol. Methods 103, 59–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Dyer, M. J. S., Hale, G., Hayhoe, F. G. J., and Waldmann, H. (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73, 1431–1439.PubMedGoogle Scholar
  20. 20.
    Neuberger, M. S., Williams, G. T., Mitchell, E. B., Jouhal, S. S., Flanagan, J. G., and Rabbitts, T. N. (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314, 268–270. 264CrossRefPubMedGoogle Scholar
  21. 21.
    Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.CrossRefPubMedGoogle Scholar
  22. 22.
    Friend, P. J., Waldmann, H., Hale, G., Cobbold, S., Rebello, P., Thiru, S., Jamieson, N. V., Johnston, P. S., and Calne, R. Y. (1991) Reversal of allograft rejection using the monoclonal antibody CAMPATH-1G. Transplant. Proc. 23, 1390–1392.PubMedGoogle Scholar
  23. 23.
    Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy. Nature 332, 323–327.CrossRefPubMedGoogle Scholar
  24. 24.
    Bruggemann, M., Williams, G. T., Bindon, C. I., Clark, M. R., Walker, M. R., Jefferies, R., Waldmann, H., and Neuberger, M. S. (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J. Exp. Med. 166, 1351–1361.CrossRefPubMedGoogle Scholar
  25. 25.
    Hale, G., Dyer, M. J. S., Clark, M. R., Phillips, J. M., Marcus, R., Riechmann, L., Winter, G., and Waldmann, H. (1988) Remission induction in non-Hodgkin lym-phoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 2, 1394–1399.CrossRefPubMedGoogle Scholar
  26. 26.
    Hale, G. (1993) Small scale production of novel therapeutic products: a new challenge for the transfusion service? (editorial) Transfus. Med. 3, 1–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Lockwood, C. M., Thiru, S., Isaacs, J. D., Hale, G., and Waldmann, H. (1993) Humanised monoclonal antibody treatment for intractable systemic vasculitis. Lancet 341, 1620–1622.CrossRefPubMedGoogle Scholar
  28. 28.
    Lockwood, C. M., Thiru, S., Stewart, S., Hale, G., Isaacs, J. D., Wraight, P., Elliott, J., and Waldmann, H. (1996) Treatment of refractory Wegener’s granulo-matosis with humanised monoclonal antibodies. Q. J. Med. 89, 903–912.Google Scholar
  29. 29.
    Isaacs, J. D., Watts, R. A., Hazleman, B. L., Hale, G., Keogan, M. T., Cobbold, S. P., and Waldmann, H. (1992) Humanised monclonal antibody therapy for rheumatoid arthritis. Lancet 340, 748–752.CrossRefPubMedGoogle Scholar
  30. 30.
    Brett, S., Baxter, G., Cooper, H., Johnston, J. M., Tite, J., and Rapson, N. (1996) Repopulation of blood lymphocyte sub-populations in rheumatoid arthritis patients treated with the depleting humanized monoclonal antibody, CAMPATH-1H. Immunology 88, 13–19.CrossRefPubMedGoogle Scholar
  31. 31.
    Jendro, M. C., Ganten, T., Matteson, E. L., Weyand, C. M., and Goronzy, J. J. (1995) Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheuamtoid arthritis. Arthritis Rheum. 38, 1242–1251.CrossRefPubMedGoogle Scholar
  32. 32.
    Pawson, R., Dyer, M. J. S., Barge, R., Matutes, E., Thornton, P. D., Emmett, E., Kluin-Nelemans, J. C., Fibbe, W. E., Willemze, R., and Catovsky, D. (1997) Treatment of T-cell prolymphocytic leukaemia with human CD52 antibody. J. Clin. Oncol. 15, 2667–2672.PubMedGoogle Scholar
  33. 33.
    Jacobs, P. Wood, L., Fullard, L., Waldmann, H., and Hale, G. (1993) T-cell depletion by exposure to CAMPATH-1G in vitro prevents graft-versus-host disease. Bone Marrow Transplant. 13, 763–769.Google Scholar
  34. 34.
    Hale, G. and Waldmann, H. for CAMPATH users (1994) Control of graft-versus-host disease and graft rejection by T cell depletion of donor and recipient with 265 CAMPATH-1 antibodies. Results of matched sibling transplants for malignant diseases. Bone Marrow Transplant. 13, 597–611.Google Scholar
  35. 35.
    Hale, G. and Waldmann, H. for CAMPATH users (1994) CAMPATH-1 monoclonal antibodies in bone marrow transplantation. Hematotherapy 3, 15–31.Google Scholar
  36. 36.
    Newman, D. K., Isaacs, J. D., Watson, P. G., Meyer, P. A., Hale, G., and Waldmann, H. (1995) Prevention of immune-mediated corneal graft destruction with the anti-lymphocyte monoclonal antibody, CAMPATH-1H. Eye 9, 564–569.PubMedGoogle Scholar
  37. 37.
    Isaacs, J. D., Dick, A. D., Haynes, R., Watson, P., Forrester, J. V., Myer, P., Hale, G., and Waldmann, H. (1996) Monoclonal antibody therapy of chronic intraocular inflammation using CAMPATH-1H. Br. J. Ophthalmol. 79, 1054,1055.CrossRefGoogle Scholar
  38. 38.
    Isaacs, J. D., Hazleman, B. L., Chakravarty, K., Grant, J. W., Hale, G., and Waldmann, H. (1996) Monoclonal antibody therapy of diffuse cutaneous sclero-derma with CAMPATH-1H. J. Rheumatol. 23, 1103–1106.PubMedGoogle Scholar
  39. 39.
    Lim, S. H., Hale, G., Marcus, R. E., Waldmann, H., and Baglin, T. P. (1993) CAMPATH-1 MoAb in the treatment of refractory autoimmune thrombocy-topenic purpura Br. J. Haematol. 84, 542–544.CrossRefPubMedGoogle Scholar
  40. 40.
    Killick, S. B., Marsh, J. C. W., Hale, G., Waldmann, H., Kelly, S. J., and Gordon-Smith, E. C. (1997) Sustained remission of severe resistant auto-immune neutro-penia with Campath-1H. Br. J. Haematol. 97, 306–308.CrossRefPubMedGoogle Scholar
  41. 41.
    Moreau, T., Thorpe, J., Miller, D., Moseley, I., Hale, G., Waldmann, H., Clayton, D., Wing, M., Scolding, N., and Compston, A. (1994) Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet 344, 298–301.CrossRefPubMedGoogle Scholar
  42. 42.
    Chatenoud, L., Ferran, C., Legendre, C., Thouard, I., Merite, S., Reuter, A., Gevaert, Y., Kreis, H., Franchimont, P., and Bach, J.-F. (1990) In vivo cell activation following OKT3 adminstration. Systematic cytokine release and modulation by corticosteroids. Transplantation 49, 697–702.CrossRefPubMedGoogle Scholar
  43. 43.
    Moreau, T., Coles, A., Wing, M. G., Isaacs, J., Hale, G., Waldmann, H., and Compston, A. (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis Brain 119, 225–237.CrossRefPubMedGoogle Scholar
  44. 44.
    Coles, A. J., Wing, M. G., Smith, S. I., Corradu, F., Greer, S., Taylor, C. J., Weetman, A. P., Hale, G., Chatterjee, V. K., Waldmann, H., and Compston, A. (1998) Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354, 1691–1696.CrossRefGoogle Scholar
  45. 45.
    Coles, A. J., Molyneux, P., Wing, M. G., Paolillo, A., Davie, C. M., Hale, G., Miller, D., Waldmann, H., and Compston, A. (1998) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann. Neurol. 46, 296–304.CrossRefGoogle Scholar
  46. 46.
    Compston, A. (1994) Future prospects for the management of multiple sclerosis. Ann Neurol. 36, S146–S150.CrossRefPubMedGoogle Scholar
  47. 47.
    Bindon, C. I., Hale, G., and Waldmann, H. (1988) Importance of antigen specificity for complement mediated lysis by monoclonal antibodies. Eur. J. Immunol. 18, 1507–1514.CrossRefPubMedGoogle Scholar
  48. 48.
    Hale, G., Xia, M.-Q., Tighe, H. P., Dyer, M. J. S., and Waldmann, H. (1990) The CAMPATH-1 antigen (CDw52). Tissue Antigens 35, 118–127.CrossRefPubMedGoogle Scholar
  49. 49.
    Xia, M.-Q., Tone, M., Packman, L., Hale, G., and Waldmann, H. (1991) Characterization of the CAMPATH-1 antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur. J. Immunol. 21, 1677–1684.CrossRefPubMedGoogle Scholar
  50. 50.
    Xia, M.-Q., Hale, G., Lifely, M. R., Ferguson, M. J., Campbell, D., Packman, L., and Waldmann, H. (1993) Structure of the CAMPATH-1 antigen, a GPI-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem. J. 293, 633–640.PubMedGoogle Scholar
  51. 51.
    Treumann, A., Lifely, R., Schneider, P., and Ferguson, M. A. J. (1995) Primary structure of CD52. J. Biol. Chem. 270, 6088–6099.CrossRefPubMedGoogle Scholar
  52. 52.
    Hale, G., Rye, P. D., Warford, A., Lauder, I., and Brito-Babapulle, A. (1993) The GPI-anchored lymphocyte antigen CDw52 is associated with the epididymal maturation of human spermatozoa. J. Reprod. Immunol. 23, 189–205.CrossRefPubMedGoogle Scholar
  53. 53.
    Kirchhoff, C., Krull, N., Pera, I., and Ivell, R. (1992) A major mRNA of the human epididymal principal cells, HE5, encodes the leucocyte differentiation CDw52 antigen peptide backbone. Mol. Repr. Dev. 34, 11–15.Google Scholar
  54. 54.
    Diekman, A. B., Westbrook-Case, A., Naaby-Hansen, S., Klotz, K. L., Flickinger, C. J., and Herr, J. C. (1997) Biochemical characterization of sperm agglutination antigen-1, a human sperm surface antigen implicated in gamete interactions. Biol. Reprod. 57, 1136–1145.CrossRefPubMedGoogle Scholar
  55. 55.
    Gilliland, L. K., Walsh, L. A., Frewin, M. R., Wise, M., Tone, M., Hale, G., Kioussis, D., and Waldmann, H. (1998) Elimination of the immunogenicity of therapeutic antibodies. J. Immunol. 162, 3663–3671.Google Scholar
  56. 56.
    Calne, R., Moffatt, S. D., Friend, P. J., Jamieson, N. V., Bradley, J. A., Hale, G., Firth, J., Bradley, J., Smith, K. G., and Waldmann, H. (1999) CAMPATH-1H allows low-dose cyclosporin monotherapy in 31 cadaveric renal allograft recipients. Transplantation 68, 1613–1616.CrossRefPubMedGoogle Scholar
  57. 57.
    Dyer, M. J. S., Hale, G., Marcus, R., and Waldmann, H. (1990) Remission induction in patients with lymphoid malignancies using unconjugated CAMPATH-1 monoclonal antibodies. Leukemia Lymphoma 2, 179–193.CrossRefGoogle Scholar
  58. 58.
    Reuter, H., Wraight, E. P., Qasim, F. J., and Lockwood, C. M. (1995) Management of vasculitis: the contribution of scintigraphic imaging to the evaluation of disease activity and classification. Q. J. Med. 88, 509–516.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Geoff Hale
    • 1
  • Herman Waldmann
    • 1
  1. 1.Sir William Dunn School of PathologyOxford UniversityOxfordUK

Personalised recommendations