Advertisement

Determination of Carbonyl Groups in Oxidized Proteins

  • Rodney L. Levine
  • Nancy Wehr
  • Joy A. Williams
  • Earl R. Stadtman
  • Emily Shacter
Part of the Methods in Molecular Biology™ book series (MIMB, volume 99)

Abstract

There now exists a bewildering array of biological processes in which free radicals have been implicated (1), and we assume that enzymes and structural proteins may be attacked whenever free radicals are generated. As a consequence, oxidative modification of proteins may occur in a variety of physiologic and pathologic processes. Although the distinction is sometimes arbitrary, these modifications may be primary or secondary. Primary modifications occur in metal-catalyzed oxidation, in radiation-mediated oxidation, and in oxidation by ozone or oxides of nitrogen. Secondary modifications occur when proteins are modified by molecules generated by oxidation of other molecules. One important example is the covalent modification of proteins by hydroxynonenal produced by oxidation of lipids (2, see also,  Chapter 3 of this volume).

Keywords

Sodium Dodecyl Sulfate Oxidative Modification Carbonyl Content Sodium Dodecyl Sulfate Micelle Excess Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Halliwell B. and Gutteridge J. M. (1990) Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 186, 1–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Levine R. L., Oliver C. N., Fulks R. M., and Stadtman E. R. (1981) Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis. Proc. Natl. Acad. Sci. USA 78, 2120–2124.PubMedCrossRefGoogle Scholar
  3. 3.
    Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., and Stadtman E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464–478.PubMedCrossRefGoogle Scholar
  4. 4.
    Shacter E., Williams J. A., Lim M., and Levine R. L. (1994) Differential susceptibility of plasma proteins to oxidative modification. Examination by Western blot immunoassay. Free Rad. Biol. Med. 17, 429–437.PubMedCrossRefGoogle Scholar
  5. 5.
    Keller R. J., Halmes N. C., Hinson J. A., and Pumford N. R. (1993) Immunochemical detection of oxidized proteins. Chem. Res. Toxicol. 6, 430–433.PubMedCrossRefGoogle Scholar
  6. 6.
    Levine R. L., Williams J. A., Stadtman E. R., and Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357.PubMedCrossRefGoogle Scholar
  7. 7.
    Shacter E., Williams J. A., Stadtman E. R., and Levine R. L. (1996) Determination of carbonyl groups in oxidized proteins, in Free Radicals: A Practical Approach (Punchard N. A. and Kelly F. J., eds.), IRL, Oxford University Press, Oxford, pp. 159–170.Google Scholar
  8. 8.
    Jones L. A., Holmes J. C., and Seligman R. B. (1956) Spectrophotometric studies of some 2,4-dinitrophenyhydrazones. Anal. Chem. 28, 191–198.CrossRefGoogle Scholar
  9. 9.
    Levine R. L. (1984) Mixed-function oxidation of histidine residues. Methods Enzymol. 107, 370–376.PubMedCrossRefGoogle Scholar
  10. 10.
    Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  11. 11.
    Helenius A., McCaslin D. R., Fries E., and Tanford C. (1979) Properties of detergents. Methods Enzymol. 56, 734–749.PubMedCrossRefGoogle Scholar
  12. 12.
    Protein Identification Resource,Release 26.0 .(1990)National Biomedical Research Foundation Washington,D.C.Google Scholar
  13. 13.
    Iwai K., Drake S. K., Wehr N. B., Weissman A. M., LaVaute T., Minato N., Klausner R. D., Levine R. L., and Rouault T. A. (1998) Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA 95, 4924–4928.PubMedCrossRefGoogle Scholar
  14. 14.
    Pompella A. & Comporti M. (1991) The use of 3-hydroxy-2-naphthoic acid hydrazide and Fast Blue B for the histochemical detection of lipid peroxidation in animal tissues—a microphotometric study. Histochemistry 95, 255–262.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith M. A., Perry G., Richey P. L., Sayre L. M., Anderson V. E., Beal M. F., and Kowall N. (1996) Oxidative damage in Alzheimer’s. Nature 382, 120–121.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Rodney L. Levine
    • 1
  • Nancy Wehr
    • 1
  • Joy A. Williams
    • 2
  • Earl R. Stadtman
    • 2
  • Emily Shacter
    • 2
  1. 1.Laboratory of Biochemistry, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesda
  2. 2.Division of Hematologic ProductsCenter for Biologics Evaluation and Research, Food and Drug AdministrationRockville

Personalised recommendations