Expression and Purification of Recombinant Proteins Using the pET System

  • Robert C. Mierendorf
  • Barbara B. Morris
  • Beth Hammer
  • Robert E. Novy
Part of the Springer Protocols Handbooks book series (SPH)


The pET System is the most powerful system yet developed for the cloning and expression of recombinant proteins in Escherichia coli. Target genes are cloned in pET plasmids under control of strong bacteriophage T7 transcription and (optionally) translation signals; expression is induced by providing a source of T7 RNA polymerase in the host cell (1, 2, 3). T7 RNA polymerase is so selective and active that almost all of the cell’s resources are converted to target gene expression; the desired product can comprise more than 50% of the total cell protein after a few hours of induction. Another important benefit of this system is its ability to maintain target genes transcriptionally silent in the uninduced state. Target genes are initially cloned using hosts that do not contain the T7 RNA polymerase gene, thus eliminating plasmid instability caused by the production of proteins potentially toxic to the host cell. Once established in a nonexpression host, plasmids are then transferred into expression hosts containing a chromosomal copy of the T7 RNA polymerase gene under lacUV5 control, and expression is induced by the addition of IPTG. Two types of T7 promoter and several hosts that differ in their stringency of suppressing basal expression levels are available, providing great flexibility and optimizing the expression of a wide variety of target genes. This chapter describes the vectors, hosts, and basic protocols for cloning, expression, and purification of target proteins in the pET System.


Target Protein Ribosome Binding Site Target Plasmid T7lac Promoter lacUV5 Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg, A. H., Lade, B. N., Chui, D., Lin, S., Dunn, J. J., and Studier, F. W. (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135.PubMedCrossRefGoogle Scholar
  3. 3.
    Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct the expression of cloned genes. Meth. Enzymol. 185, 60–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Aslanidis, C. and de Jong, P. J. (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074.PubMedCrossRefGoogle Scholar
  5. 5.
    Seed, B. (1987) An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature 329, 840–842.PubMedCrossRefGoogle Scholar
  6. 6.
    Dubendorff, J. W. and Studier, F. W. (1991) Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J. Mol. Biol. 219, 45–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Grodberg, J. and Dunn, J. J. (1988) OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253.PubMedGoogle Scholar
  8. 8.
    White, C. B., Chen, Q., Kenyon, G. L., and Babbitt, P. C. (1995) A novel activity of ompT. J. Biol. Chem. 270, 12,990–12,994.PubMedCrossRefGoogle Scholar
  9. 9.
    Leahy, D. J., Hendrickson, W. A., Aukhil, I., and Erickson, H. P. (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991.PubMedCrossRefGoogle Scholar
  10. 10.
    Wood, W. (1966) Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J. Mol. Biol. 16, 118–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Doherty, A. J., Ashford, S. R., Brannigan, J. A. and Wigley, D. B. (1995) A superior host strain for the over-expression of cloned genes using the T7 promoter based vectors. Nucleic Acids Res. 23, 2074–2075.PubMedCrossRefGoogle Scholar
  12. 12.
    Derman, A. I., Prinz, W. A., Belin, D., and Beckwith, J. (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747.PubMedCrossRefGoogle Scholar
  13. 13.
    Studier, F. W. (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219, 37–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Moffatt, B. A. and Studier, F. W. (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49, 221–227.PubMedCrossRefGoogle Scholar
  15. 15.
    Inouye, M., Arnheim, N., and Sternglanz, R. (1973) Bacteriophage T7 lysozyme is an N-acetylmuramyl-L-alanine amidase. J. Biol. Chem. 248, 7247–7252.PubMedGoogle Scholar
  16. 16.
    Chang, A. C. Y. and Cohen, S. N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156.PubMedGoogle Scholar
  17. 17.
    Dunn, J. J. and Studier, F. W. (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535 and erratum (1984). J. Mol. Biol. 175, 111, 112.PubMedCrossRefGoogle Scholar
  18. 18.
    McAllister, W. T., Morris, C., Rosenberg, A. H., and Studier, F. W. (1981) Utilization of bacteriophage T7 late promoters in recombinant plasmids during infection. J. Mol. Biol. 153, 527–544.PubMedCrossRefGoogle Scholar
  19. 19.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  20. 20.
    Schein, C. H. and Noteborn, M. H. M. (1989) Production of soluble recombinant proteins in bacteria. Bio/Technology 7, 1141–1148.Google Scholar
  21. 21.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1989) Expression and purification of maltose binding protein fusions, in Current Protocols in Molecular Biology (Riggs, P., ed.), Wiley, New York, pp. 16.6.1–16.6.14.Google Scholar
  22. 22.
    Mierendorf, R., Yaeger, K., and Novy, R. (1994) The pET system: your choice for expression. Innovations 1, 1–3.Google Scholar
  23. 23.
    Novy, R., Berg, J., Yaeger, K., and Mierendorf, R. (1995) pET TRX fusion system for increased solubility of target proteins expressed in E. coli. inNovations 3, 7–9.Google Scholar
  24. 24.
    LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11, 187–193.PubMedCrossRefGoogle Scholar
  25. 25.
    Wickner, W., Driessen, A. J. M., and Hartl, F.-U. (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane. Ann. Rev. Biochem. 60, 101–124.PubMedCrossRefGoogle Scholar
  26. 26.
    Hirel, P.-H., Schmitter, J.-M., Dessen, P., Fayat, G., and Blanquet, S. (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86, 8247–8251.PubMedCrossRefGoogle Scholar
  27. 27.
    Lathrop, B. K., Burack, W. R., Biltonen, R. L., and Rule, G. S. (1992) Expression of a group II phospholipase A2 from the venom of Agkistrodon piscivorus in Escherichia coli: recovery and renaturation from bacterial inclusion bodies. Prot. Exp. Purif. 3, 512–517.CrossRefGoogle Scholar
  28. 28.
    Tobias, J. W., Shrader, T. E., Rocap, G., and Varchavsky, A. (1991) The N-end rule in bacteria. Science 254, 1374–1377.PubMedCrossRefGoogle Scholar
  29. 29.
    Preibisch, G., Ishihara, H., Tripier, D., and Leineweber, M. (1988) Translational controls. Unexpected translation initiation within the coding region of eukaryotic genes expressed in Escherichia coli. Gene 72, 179–186.PubMedCrossRefGoogle Scholar
  30. 30.
    Hailing, S. M. and Smith, S. (1985) Expression in Escherichia coli of multiple products from a chimeric gene fusion: evidence for the presence of procaryotic translational control regions within eucaryotic genes. Bio/Technology 3, 715–720.CrossRefGoogle Scholar
  31. 31.
    Kim, J.-S. and Raines, R. T. (1994) Peptide tags for a dual affinity fusion system. Anal. Biochem. 219, 165,166PubMedCrossRefGoogle Scholar
  32. 32.
    McCormick, M. and Mierendorf, R. (1994) S·Tag: a multipurpose fusion peptide for recombinant proteins. inNovations 1, 4–6.Google Scholar
  33. 33.
    Tessier, L.-H., Sondermeyer, P., Faure, T., Dreyer, D., Benavente, A., Villeval, D., Courtney, M., and Lecocq, J.-P. (1984) The influence of mRNA secondary structure on human IFN-λ gene expression in E. coli. Nucleic Acids Res. 12, 7663–7675.PubMedCrossRefGoogle Scholar
  34. 34.
    Looman, A. C., Bodlaender, J., De Gruyter, M., Vogelaar, A., and Van Knippenberg, P. H. (1986) Secondary structure as a primary determinant of the efficiency of ribosomal binding sites in Escherichia coli. Nucleic Acids Res. 14, 5481–5496.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, N., Zhang, S.-Q., Cozzitorto, J., Yang, J.-S., and Testa, D. (1987) Modification of mRNA secondary structure and alteration of the expression of human interferon al in Escherichia coli. Gene 58, 77–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang, S., Zubay, G., and Goldman, E. (1991) Low-usage codons in Escherichia coli, yeast, fruit flies and primates. Gene 105, 61–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Sorensen, M. A., Kurland, C. G., and Pedersen, S. (1989) Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207, 365–377.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen, G.-F. T. and Inouye, M. (1990) Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18, 1465–1473.PubMedCrossRefGoogle Scholar
  39. 39.
    Ikemura, T. (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13–34.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Robert C. Mierendorf
    • 1
  • Barbara B. Morris
    • 2
  • Beth Hammer
    • 1
  • Robert E. Novy
    • 1
  1. 1.NovagenMadison
  2. 2.Department of BiochemistryUniversity of NevadaReno

Personalised recommendations