Long-Range Polymerase Chain Reaction

  • William Waggott
Part of the Springer Protocols Handbooks book series (SPH)


Conventional polymerase chain reaction (PCR) enables reliable amplification of 3–4 kb of DNA (1) while attempts at optimization has enabled 15.6 kb of λ DNA to be amplified (2). The maximum amplifiable length of PCR is limited by the low fidelity of the Thermus aquaticus (Taq) DNA polymerase (3), the most commonly used thermostable polymerase. It is believed that inadvertent nucleotide misincorporations during the PCR extension steps cause chain terminations (3). The Taq polymerase lacks proofreading properties (4) and thus is unable to correct such misincorporations. The higher extension KM value for a misincorporated nucleotide is thought to cause detachment of the Taq polymerase from template DNA.


Polymerase Chain Reaction Polymerase Chain Reaction Primer Anaplastic Large Cell Lymphoma Myotonic Dystrophy Exonuclease Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Erlich, H. A., Gelfand, D., and Sninsky, J. J. (1991) Recent advances in the polymerase chain reaction. Science 252, 1643–1651.PubMedCrossRefGoogle Scholar
  2. 2.
    Kainz, P., Schmiedlechner, A., and Strack, H. B. (1992) In vitro amplification of DNA fragments greater than 10 kb. Anal. Biochem. 202, 46–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction amplified DNA. Proc. Natl Acad. Sci. USA 85, 9436–9440.PubMedCrossRefGoogle Scholar
  4. 4.
    Tindall, K. R. and Kunkel, T. A. (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013.PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes, W. M. (1994) PCR amplification of up to 35 kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699.PubMedCrossRefGoogle Scholar
  7. 7.
    Agostini, H. T. and Stoner, G. L. (1995) Amplification of the complete polyomavirus JC genome from brain, cerebrospinal fluid and urine using pre-PCR restriction enzyme digestion. J. Neurovirol. 1, 316–320.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, Y. Y., Hengstenberg, C., and Maisch, B. (1995) Whole mitochondrial genome amplification reveals basal level multiple deletions in mtDNA of patients with dilated cardiomyopathy. Biochem. Biophys. Res. Comm. 210, 211–218.PubMedCrossRefGoogle Scholar
  9. 9.
    Reynier, P., Pellissier, J. F., Harle, J. R., and Malthiery, Y. (1994) Multiple deletions of the mitochondrial DNA in polymyalgia rheumatica. Biochem. Biophys. Res. Comm. 205, 375–380.PubMedCrossRefGoogle Scholar
  10. 10.
    Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Canizares, J., Koutnikova, H., Bidichandani, S. I., Gellera, C., Brice, A., Trouillas, P., Demichele, G., Filla, A., Defrutos, R., Palau, F., Patel, P. I., Didonato, S., Mandel, J. L., Cocozza, S., Koenig, M., and Pandolfo, M. (1996) Friedreichs ataxia—an autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng, S., Barcelo, J. M., and Korneluk, R. G. (1996) Characterization of large CTG repeat expansions in myotonic dystrophy alleles using PCR. Hum. Mutat. 7, 304–310.PubMedCrossRefGoogle Scholar
  12. 12.
    Tellier, R., Bukh, J., Emerson, S. U., and Purcell, R. H. (1996) Amplification of the full-length hepatitis A virus genome by long reverse transcription PCR and transcription of infectious RNA directly from the amplicon. Proc. Natl. Acad. Sci. USA 93, 4370–4373.PubMedCrossRefGoogle Scholar
  13. 13.
    Diachenko, L. B., Ledesma, J., Chenchik, A. A., and Siebert, P. D. (1996) Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed messenger RNA. Biochem. Biophys. Res. Comm. 219, 824–828.PubMedCrossRefGoogle Scholar
  14. 14.
    Waggott, W., Lo, Y. M. D., Bastard, C., Gatter, K. C., Leroux, D., Mason, D. Y., Boultwood, J., and Wainscoat, J. S. (1995) Detection of NPM-ALK DNA rearrangement in CD30 positive anaplastic large-cell lymphoma. Br. J. Haematol. 89, 905–907.PubMedCrossRefGoogle Scholar
  15. 15.
    Sarris, A. H., Luthra, R., Papadimitracopoulou, V., Waasdorp, M., Dimopoulos, M. A., McBride, J. A., Cabanillas, F., Duvic, M., Deisseroth, A., Morris, S. W., and Pugh W. C. (1996) Amplification of genomic DNA demonstrates the presence of the t(2–5)(p23–q35) in anaplastic large-cell lymphoma, but not in other non-Hodgkins lymphomas, Hodgkins disease, or lymphomatoid papulosis. Blood 88, 1771–1779.PubMedGoogle Scholar
  16. 16.
    Akasaka, T., Muramatsu, M., Ohno, H., Miura, I., Tatsumi, E., Fukuhara, S., Mori, T., and Okuma, M. (1996) Application of long distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood 88, 985–994.PubMedGoogle Scholar
  17. 17.
    Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., and Look, A. T. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkins lymphoma. Science 263, 1281–1284.PubMedCrossRefGoogle Scholar
  18. 18.
    Gunther, S., Li, B. C., Miska, S., Kruger, D. H., Meisel, H., and Will, H. (1995) A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J. Virol. 69, 5437–5444.PubMedGoogle Scholar
  19. 19.
    Maclaren, D. C. and Clarke, S. (1996) Rapid mapping of genomic p1 clones—the mouse L-isoaspartyl/D-aspartyl methyltransferase gene. Genomics 35, 299–307.PubMedCrossRefGoogle Scholar
  20. 20.
    Machida, M., Manabe, M., Yasukawa, M., and Jigami, Y. (1996) Application of long-distance PCR to restriction site mapping of a cloned DNA fragment on the lambda-EMBL3 phage vector. Biosci. Biotechnol. Biochem. 60, 1011–1013.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, D. Z. and Vijg, J. (1996) Multiplex coamplification of 24 retinoblastoma gene exons after pre-amplification by long-distance PCR. Nucleic Acids Res. 24, 538,539.PubMedCrossRefGoogle Scholar
  22. 22.
    Cline, J., Braman, J. C, and Hogrefe, H. H. (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546–3551.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng, S., Chen, Y. M., Monforte, J. A., Higuchi, R., and Vanhouten, B. (1995) Template integrity is essential for PCR amplification of 20 kb to 30 kb sequences from genomic DNA. PCR Metho ds Appl. 4, 294–298.PubMedCrossRefGoogle Scholar
  24. 24.
    Melov, S., Lithgow, G. J., Fischer, D. R., Tedesco, P. M., and Johnson, T. E. (1995) Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 23, 1419–1425.PubMedCrossRefGoogle Scholar
  25. 25.
    Ermak, G., Jennings, T., Robinson, L., Ross, J. S., and Figge, J. (1996) Restricted patterns of CD44 variant exon expression in human papillary thyroid carcinoma. Cancer Res. 56, 1037–1042.PubMedGoogle Scholar
  26. 26.
    Stewart, A., Gravitt, P. E., Cheng, S., and Wheeler, C. M. (1995) Generation of entire human papillomavirus genomes by long PCR-frequency of errors produced during amplification. PCR Methods Appl. 5, 79–88.CrossRefGoogle Scholar
  27. 27.
    Ling, M. F. and Robinson, B. H. (1995) A one-step polymerase chain reaction site-directed mutagenesis method for large gene cassettes with high efficiency, yield, and fidelity. Anal. Biochem. 230, 167–172.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • William Waggott
    • 1
  1. 1.Department of Cellular Sciences, John Radcliffe HospitalUniversity of OxfordUK

Personalised recommendations