Advertisement

Polymerase Chain Reaction

Basic Principles and Routine Practice
  • Lori A. Kolmodin
  • J. Fenton Williams
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The polymerase chain reaction (PCR) is a primer-mediated enzymatic amplification of specifically cloned or genomic DNA sequences (1). This PCR process, invented by Kary Mullis over 10 years ago, has been automated for routine use in laboratories worldwide. The template DNA contains the target sequence, which may be tens or tens of thousands of nucleotides in length. A thermostable DNA polymerase, Taq DNA polymerase, catalyzes the buffered reaction in which an excess of an oligonucleotide primer pair and four deoxynucleoside triphosphates (dNTPs) are used to make millions of copies of the target sequence. Although the purpose of the PCR process is to amplify template DNA, a reverse transcription step allows the starting point to be RNA (2, 3, 4, 5).

Keywords

Polymerase Chain Reaction Polymerase Chain Reaction Product Polymerase Chain Reaction Amplification Polymerase Chain Reaction Primer Polymerase Chain Reaction Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds. (1990) PCR Protocols. A Guide to Methods and Applications. Academic Press, San Diego, CA.Google Scholar
  2. 2.
    Mullis, K. B. and Faloona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase chain reaction. Methods Enzymol. 155, 335–350.PubMedCrossRefGoogle Scholar
  3. 3.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.PubMedCrossRefGoogle Scholar
  4. 4.
    Saiki, R. K., Scharf, S. J., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.PubMedCrossRefGoogle Scholar
  5. 5.
    Scharf, S. J., Horn, G. T., and Erlich, H. A. (1986) Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233, 1076–1087.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, A. M., Doyle, M. V., and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9721.PubMedCrossRefGoogle Scholar
  7. 7.
    Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature 339, 237,238.PubMedCrossRefGoogle Scholar
  8. 8.
    Orrego, C. (1990) Organizing a laboratory for PCR work. PCR Protocols. A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic Press, San Diego, CA, pp. 447–454.Google Scholar
  9. 9.
    Kitchin, P. A., Szotyori, Z., Fromholc, C, and Almond, N. (1990) Avoiding false positives. Nature 344, 201.PubMedCrossRefGoogle Scholar
  10. 10.
    Longo, N., Berninger, N. S., and Hartley, J. L. (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93, 125–128.PubMedCrossRefGoogle Scholar
  11. 11.
    Chou, Q., Russell, M., Birch, D. E., Raymond, J., and Bloch, W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20, 1717–1723.PubMedCrossRefGoogle Scholar
  12. 12.
    Birch, D. E., Kolmodin, L., Laird, W. J., McKinney, N., Wong, J., Young, K. K. Y., Zangenberg, G. A., and Zoccoli, M. A. (1996) Simplified hot start PCR. Nature 381, 445–446.PubMedCrossRefGoogle Scholar
  13. 13.
    Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. D. (1988) DNA sequencing with Thermus aquaticus DNA polymerases and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl Acad. Sci. USA 85, 9436–9440.PubMedCrossRefGoogle Scholar
  14. 14.
    Abramson, R. D. (1995) Thermostable DNA polymerases, in PCR Strategies (Innes, M. A., Gelfand, D. H., and Sninsky, J. J., eds.), Academic Press, San Diego, CA, pp. 39–57.CrossRefGoogle Scholar
  15. 15.
    Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280.PubMedCrossRefGoogle Scholar
  16. 16.
    Sobral, B. W. S. and Honeycutt, R. J. (1993) High output genetic mapping of polyploids using PCR generated markers. Theor. Appl. Genetics 86, 105–112.CrossRefGoogle Scholar
  17. 17.
    Myers, T. W. and Gelfand, D. H. (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30, 7661–7666.PubMedCrossRefGoogle Scholar
  18. 18.
    Myers, T. W. and Sigua, C. L. (1995) Amplification of RNA, in PCR Strategies (Innes, M. A., Gelfand, D. H., and Sninsky, J. J., eds.), Academic Press, San Diego, CA, pp. 58–68.CrossRefGoogle Scholar
  19. 19.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., and Van Houten, B. (1995) Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA. PCR Meth. Appl. 4, 294–298.CrossRefGoogle Scholar
  21. 21.
    Erlich, H. A., ed. (1989) PCR Technology, Principles and Applications for DNA Amplification. Stockton, New York.Google Scholar
  22. 22.
    Landre, P. A., Gelfand, D. H., and Watson, R. H. (1995) The use of cosolvents to enhance amplification by the polymerase chain reaction, in PCR Strategies (Innis, M. A., Gelfand, D. H., and Sninsky, J. J., eds.), Academic, San Diego, CA, pp. 3–16.CrossRefGoogle Scholar
  23. 23.
    AmpliWax PCR Gem 100 and PCR Gem 50. Package Insert. BIO-66, 55631-10/93. Perkin Elmer Corporation, Foster City, CA.Google Scholar
  24. 24.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 6.20,6.21, B.23,B.24.Google Scholar
  25. 25.
    Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234.PubMedCrossRefGoogle Scholar
  26. 26.
    Kolmodin, L., Cheng, S., and Akers, J. (1995) GeneAmp XL PCR kit. Amplifications: A Forum for PCR Users (The Perkin-Elmer Corporation) 13, 1–5.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Lori A. Kolmodin
    • 1
  • J. Fenton Williams
    • 2
  1. 1.Roche Molecular SystemsAlameda
  2. 2.PE BiosystemsFoster City

Personalised recommendations