Phage-Display Libraries of Murine and Human Antibody Fab Fragments

  • Jan Engberg
  • Lene K. Johansen
  • Michelle Westengaard-Hildinge
  • Erik S. Riise
  • Bjarne Albrechtsen
Part of the Springer Protocols Handbooks book series (SPH)


This chapter describes efficient procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. Phagemid vectors are used for placing randomly paired light (L) and heavy (H) chain-coding regions under transcriptional control of P lac . The L (or H) chain-coding region is fused in-frame with the truncated phage gene, ΔgIII, coding for a truncated version of the phage surface protein pill (ΔpIII). After superinfection with helper phage and induction of P lac , Fd (composed of VH and CH1 domains), and κ (or λ) L chains assemble into Fab fragments in the periplasm, and the Fab-ΔpIII protein complex is displayed at one end of the phage by displacing one (or more) of the wild-type pill proteins. Enrichment of Fab phages with affinity for a specific antigen is then done by successive rounds of affinity purification in antigen-coated microtiter wells or immunotubes and reinfection of Escherichia coli cells by the eluted bound phages (1, 2, 3, 4, 5, 6).


Polymerase Chain Reaction Program Polymerase Chain Reaction Tube Variable Heavy Link Fragment pelB Leader 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoogenboom, R. H., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.PubMedCrossRefGoogle Scholar
  2. 2.
    Kang, A. K., Barbas, C. F., Janda, K. D., Benkovic, S. J., and Lerner, R. A. (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88, 4363–4366.PubMedCrossRefGoogle Scholar
  3. 3.
    Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147–153.PubMedCrossRefGoogle Scholar
  4. 4.
    Ørum, H., Andersen, P. S., Riise, E., Øster, A., Johansen, L. K., Bjørnvad, M., Svendsen, I., and Engberg, J. (1993) Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res. 21(19), 4491–4498.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoogenboom, H. R., Marks, J. D., Griffiths, A. D., and Winter, G. (1992) Building antibodies from their genes. Immunol. Rev. 130, 41–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Ann. Rev. Immunol. 12, 433–455.CrossRefGoogle Scholar
  7. 7.
    Johansen, L. K., Albrechtsen, B., Andersen, H. W., and Engberg, J. (1995) pFab60: a new efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng. 8(10), 1063–1067.PubMedCrossRefGoogle Scholar
  8. 8.
    Andersen, P. S., Ørum, H., and Engberg, J. (1996) One-step cloning of murine Fab gene fragments independent of IgH isotype for phage display libraries. Biotechniques 20, 340–342.PubMedGoogle Scholar
  9. 9.
    Dziegiel, M., Nielsen, L., Andersen, P. S., Blancher, A., Dickmeiss, E., and Engberg, J. (1995) Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D. J. Immunol. Methods 182, 7–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Engberg, J., Andersen, P. S., Nielsen, L. K., Dziegiel, M., Johansen, L. K., and Albrechtsen, B. (1996) Phage-display libraries of murine and human antibody fragments. Mol. Biotechnol. 6, 287–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  12. 12.
    Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., and Gottesman, K. S. (1991) Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, U.S. Government Printing Office, Washington, DC, 1356–1460.Google Scholar
  13. 13.
    Zoller, P. (1994) How optimal electroporation efficiency varies for different strains of E. coli. BIO-RADiations 90, 5.Google Scholar
  14. 14.
    Moreira, R. and Noren, C. (1995) Minimum duplex requirements for restriction enzyme cleavage near the termini of linear DNA fragments. Biotechniques 19(1), 56–59.PubMedGoogle Scholar
  15. 15.
    Ørum, H., Nielsen, H., and Engberg, J. (1991) Spliceosomal small nuclear RNAs of Tetrahymena thermophilia and some possible snRNA-snRNA base-pairing interactions. J. Mol Biol. 222, 219–232.PubMedCrossRefGoogle Scholar
  16. 16.
    Engelhardt, O., Grabherr, R., Himmler, G., and Riiker, F. (1994) Two step cloning of antibody variable domains in a phage display vector. Biotechniques 17, 44–46.PubMedGoogle Scholar
  17. 17.
    Chuang, S.-E., Chen, A.-L., and Chao, C.-C. (1995) Growth of E. coli at low temperature increases the transformation frequency by electroporation. Nucleic Acids Res. 23(9), 1641.PubMedCrossRefGoogle Scholar
  18. 18.
    Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16(13), 6127–6145.PubMedCrossRefGoogle Scholar
  19. 19.
    Plückthun, A. and Skerra, A. (1989) Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol. 178, 497–515.PubMedCrossRefGoogle Scholar
  20. 20.
    Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 98.Google Scholar
  21. 21.
    Kretzschmar, T., Zimmermann, C., and Geiser, M. (1995) Selection procedures for nonmatured phage antibodies: a quantitative comparison and optimization strategies. Anal. Biochem. 224, 413–419.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Jan Engberg
    • 1
  • Lene K. Johansen
    • 1
  • Michelle Westengaard-Hildinge
    • 1
  • Erik S. Riise
    • 1
  • Bjarne Albrechtsen
    • 1
  1. 1.Department of BiologyRoyal Danish School of PharmacyCopenhagenDenmark

Personalised recommendations