Magnetic Particle-Based Separation Techniques for Monitoring Bacteria from Natural Environments

  • Jonathan Porter
  • Roger Pickup
Part of the Methods in Biotechnology book series (MIBT, volume 12)


Physical separation of either intact target cells or specific molecules from many environments can result in a suspension free of contaminating particles, nontarget cells and biological inhibitors and highly enriched in the target cells or molecules of interest. The processed sample will be ready for the next part of the overall experimental protocol; e.g., a culture step, or a molecular biological procedure, and greater confidence in a successful outcome will be achieved. A range of methods exist for whole-cell extractions from a variety of environments. Such methods may aim to obtain a clean suspension that is representative of the bulk cell population, or may aim to target specific cells. On occasion, it is necessary to obtain a clean bulk cell suspension prior to specific cell extraction. This chapter deals with the separation of specific cells, either intact or targeting a marker molecule of interest. Methods for intact cell separations include flow cytometric cell sorting (1), optical trapping (2), micromanipulation (3), dielectrophoresis (4), ultrasound sedimentation (5), sedimentation field-flow fractionation (6) and elutriation (7,8). The general applicability and the degree of selectivity that can be achieved for the cell selection varies with each method. Of special importance in the context of this book is the environment from which the samples are taken, and the presence of nontarget particulate material, which can easily foul sensitive instruments, clog filters or hamper microscopic observations. One approach that has proven feasible from environments as challenging as feces, plant tissue, or soil is the use of magnetic particle separation technology.


Magnetic Particle Magnetic Bead Magnetic Separation Target Bacterium Large Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Porter, J., Edwards, C., Morgan, J. A. W., and Pickup, R. W. (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl. Environ. Microbiol. 59, 3327–3333.Google Scholar
  2. 2.
    Mitchell, J. G., Weller, R., Beconi, M., Sell, J., and Holland, J. (1993) A practical optical trap for manipulating and isolating bacteria from complex microbial communities. Microb. Ecol. 25, 113–119.CrossRefGoogle Scholar
  3. 3.
    Bradford, D., Hugenholtz, P., Seviour, E. M., Cunningham, M. A., Stratton, H., Seviour, R. J., and Blackall, L. L. (1996) 16S ribosomal RNA analysis of isolates obtained from Gram-negative, filamentous bacteria micromanipulated from activated-sludge. Syst. Appl. Microbiol. 19, 334–343.CrossRefGoogle Scholar
  4. 4.
    Markx, G. H., Huang, Y., Zhou, X.-F., and Pethig, R. (1994) Dielectrophoretic charcaterization and separation of micro-organisms. Microbiology 140, 585–591.CrossRefGoogle Scholar
  5. 5.
    Limaye, M. S., Hawkes, J. J., and Coakley, W. T. (1996) Ultrasonic standing wave removal of microorganisms from suspension in small batch systems. J. Microbiol. Methods 27, 211–220.CrossRefGoogle Scholar
  6. 6.
    Sharma, R. V., Edwards, R. T., and Beckett, R. (1993) Physical characterization and quantification of bacteria by sedimentation field-flow fractionation. Appl. Environ. Microbiol. 59, 1864–1875.Google Scholar
  7. 7.
    Hopkins, D. W., O’Donnell, A. G., and MacNaughton, S. J. (1991) Evaluation of a dispersion and elutriation technique for sampling microorganisms from soil. Soil Biol. Biochem. 23, 227–232.CrossRefGoogle Scholar
  8. 8.
    Pomponi, S. A. and Cucci, T. L. (1989) Separation and concentration of phytoplankton populations using centrifugal elutriation. Cytometry 10, 580–586.CrossRefGoogle Scholar
  9. 9.
    Bifulco, J. M. and Schaefer, F. W. (1993) Antibody-magnetite method for selective concentration of Giardia lamblia cysts from water samples. Appl. Environ. Microbiol. 59, 772–776.Google Scholar
  10. 10.
    Miltenyi, S., Muller, W., Weichel, W., and Radbruch, A. (1990) High gradient magnetic cell separation with MACS. Cytometry 11, 231–238.CrossRefGoogle Scholar
  11. 11.
    Morgan, J. A. W., Winstanley, C., Pickup, R. W., and Saunders, J. R. (1991) The rapid immunocapture of Pseudomonas putida cells from lakewater using bacterial flagella. Appl. Environ. Microbiol. 57, 503–509.Google Scholar
  12. 12.
    Wipat, A., Wellington, E. M. H., and Saunders, V. A. (1994) Monoclonal-antibodies for Streptomyces lividans and their use for immunomagnetic capture of spores from soil. Microbiology 140, 2067–2076.CrossRefGoogle Scholar
  13. 13.
    Mullins, P. H., Gurtler, H., and Wellington, E. M. H. (1995) Selective recovery of Streptosporangium fragile from soil by indirect immunomagnetic capture. Microbiology 141, 2149–2156.CrossRefGoogle Scholar
  14. 14.
    Dye, M. (1994) The enrichment of Rhizobium from a model system using immunomagnetic separation. J. Microbiol. Methods 19, 235–245.CrossRefGoogle Scholar
  15. 15.
    Christensen, B., Torsvik, T., and Lien, T. (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North-sea-oil field waters. Appl. Environ. Microbiol. 58, 1244–1248.Google Scholar
  16. 16.
    Levasseur, S., Husson, M. O., Leitz, R., Merlin, F., Laurent, F., Peladan, F., Drocourt, J. L., Leclerc, H., van Hoegaerden, M. (1992) Rapid detection of members of the family Enterobacteriaceae by a monoclonal antibody. Appl. Environ. Microbiol. 58, 1524–1529.Google Scholar
  17. 17.
    Gehring, A. G., Crawford, C. G., Mazenko, R. S., van Houten, L. J., and Brewster, J. D. (1996) Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium. J. Immunol. Methods 195, 15–25.CrossRefGoogle Scholar
  18. 18.
    Jones, J. B. and van Vuurde, J. W. L. (1996) Immunomagnetic isolation of Xanthomonas campestris pv. pelargonii. J. Appl. Bacteriol. 81, 78–82.CrossRefGoogle Scholar
  19. 19.
    Porter, J., Pickup, R. W., and Edwards, C. (1997) Evaluation of flow cytometric methods for the detection and viability assessment of bacteria in soil. Soil Biol. Biochem. 29, 91–100.CrossRefGoogle Scholar
  20. 20.
    Choi, B. K., Wyss, C., and Gobel, U. B. (1996) Phylogenetic analysis of pathogen related oral spirochetes. J. Clin. Microbiol. 34, 1922–1925.Google Scholar
  21. 21.
    Li, Z. M., Bai, G. H., von Reyn, C. F., Marino, P., Brennan, M. J., Gine, N., and Morris, S. L. (1996) Rapid detection of Mycobacterium avium in stool samples from AIDS patients by immunomagnetic PCR. J. Clin. Microbiol. 34, 1903–1907.Google Scholar
  22. 22.
    van der Wolf, J. M., Hyman, L. J., Jones, D. A. C., Grevesse, C., van Beckhoven, J. R. C. M., van Vuurde, J. W. L., and Perombelon, M. C. M. (1996) Immunomagnetic separation of Erwinia carotovora subsp. atroseptica from potato peel extracts to improve detection on a crystal violet pectate medium or by PCR. J. Appl. Bacteriol. 80, 487–495.CrossRefGoogle Scholar
  23. 23.
    Stark, M., Reizenstein, E., Uhlen, M., and Lundeberg, J. (1996) Immunomagnetic separation and solid-phase detection of Bordetella pertussis. J. Clin. Microbiol. 34, 778–784.Google Scholar
  24. 24.
    Bennett, A. R., MacPhee, S., and Betts, R. P. (1996) The isolation and detection of Escherichia coli O157 by use of immunomagnetic separation and immunoassay procedures. Lett. Appl. Microbiol. 22, 237–243.CrossRefGoogle Scholar
  25. 25.
    Yu, H. and Bruno, J. G. (1996). Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl. Environ. Microbiol. 62, 587–592.Google Scholar
  26. 26.
    Hartung, J. S., Pruvost, O. P., Villemot, I., and Alvarez, A. (1996) Rapid and sensitive colorimetric detection of Xanthomonas axonopodis pv. citri by immunocapture and a nested polymerase chain reaction assay. Phytopathology 86, 95–101.CrossRefGoogle Scholar
  27. 27.
    Benkirane, R. M., Guillot, E., and Mouton, C. (1995) Immunomagnetic PCR and DNA probe for detection and identification of Porphyromonas gingivalis. J. Clin. Microbiol. 33, 2908–2912.Google Scholar
  28. 28.
    Enroth, H. and Engstrand, L. (1995) Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens. J. Clin. Microbiol. 33, 2162–2165.Google Scholar
  29. 29.
    van der Wolf, J. M., van Beckhoven, J. R. C. M., de Vries, P. M., and van Vuurde, J. W. L. (1994) Verification of ELISA results by immunomagnetic isolation of antigens from extracts and analysis with SDS-PAGE and western blotting, demonstrated for Erwinia spp. in potatoes. J. Appl. Bacteriol. 77, 160–168.CrossRefGoogle Scholar
  30. 30.
    Kapperud, G., Vardund, T., Skjerve, E., Hornes, E., and Michaelsen, T. E. (1993) Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reaction and colorimetric detection of amplified DNA. Appl. Environ. Microbiol. 59, 2938–2944.Google Scholar
  31. 31.
    Widjojoatmodjo, M. N., Fluit, A. C., Torensma, R., and Verhoef, J. (1993) Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins—applications in enzyme immunoassays and immunomagnetic separations. J. Microbiol. Methods 165, 11–19.Google Scholar
  32. 32.
    Widjojoatmodjo, M. N., Fluit, A. C., Torensma, R., Keller, B. H. I., and Verhoef, J. (1991) Evaluation of the magnetic immuno PCR assay for rapid detection of Salmonella. Eur. J. Clin. Microbiol. Infect. Dis. 10, 935–938.CrossRefGoogle Scholar
  33. 33.
    Nese, L. and Enger, O. (1993) Isolation of Aeromonas salmonicida from salmon lice (Lepeophtheirus salmonis) and marine plankton. Diseases of Aquatic Organisms 16, 79–81.CrossRefGoogle Scholar
  34. 34.
    Islam, D., Tzipori, S., Islam, M., and Lindberg, A. A. (1993) Rapid detection of Shigella dysenteriae and Shigella flexneri in feces by an immunomagnetic assay with monoclonal antibodies. Eur. J. Clin. Microbiol. Infect. Dis. 12, 25–32.CrossRefGoogle Scholar
  35. 35.
    Islam, D., and Lindbergh, A. A. (1992) Detection of Shigella dysenteriae Type 1 and Shigella flexneri in feces by immunomagnetic isolation and polymerase chain reaction. J. Clin. Microbiol. 30, 2801–2806.Google Scholar
  36. 36.
    Parmar, N., Easter, M. C., and Forsythe, S. J. (1992) The detection of Salmonella enteriditis and Salmonella typhimurium using immunomagnetic separation and conductance microbiology. Lett. Appl. Microbiol. 15, 175–178.CrossRefGoogle Scholar
  37. 37.
    Tomoyasu, T. (1992) Development of the immunomagnetic enrichment method selective for Vibrio parahaemolyticus serotype K and its application to food poisoning study. Appl. Environ. Microbiol. 58, 2679–2682.Google Scholar
  38. 38.
    Luk, J. M. C. and Lindeberg, A. A. (1991) Rapid and sensitive detection of Salmonella (O-6, 7) by immunomagnetic monoclonal antibody-based assays. J. Immunol. Methods 137, 1–8.CrossRefGoogle Scholar
  39. 39.
    Luk, J. M. C., Kongmuang, U., Tsang, R. S. W., and Lindeberg, A. A. (1997) An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D salmonellae: a rapid screening prototype. J. Clin. Microbiol. 35, 714–718.Google Scholar
  40. 40.
    Bard, D. G. and Ward, B. B. (1997) A species-specific bacterial productivity method using immunomagnetic separation and radiotracer experiments. J. Microbiol. Methods 28, 207–219.CrossRefGoogle Scholar
  41. 41.
    Bruno, J. G., Yu, H., Kilian, J. P., and Moore, A. A. (1996) Development of an immunomagnetic assay system for rapid detection of bacteria and leukocytes in body fluids. J. Mol. Recognition 9, 474–479.CrossRefGoogle Scholar
  42. 42.
    Besser, T. E., Hancock, D. D., Pritchett, L. C., McRae, E. M., Rice, D. H., and Tarr, P. I. (1997) Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. J. Infect. Dis. 175, 726–729.CrossRefGoogle Scholar
  43. 43.
    Damgaard, P. H., Jacobsen, C. S., and Sorenson, J. (1996) Development and application of a primer set for specific detection of Bacillus thuringiensis and Bacillus cereus in soil using magnetic capture hybridization and PCR amplification. Syst. Appl. Microbiol. 19, 436–441.CrossRefGoogle Scholar
  44. 44.
    Yu, H., Bruno, J. G., Cheng, T. C., Calomiris, J. J., and Goode, M. T. (1995) A comparative study of PCR detection and quantitation by electrochemiluminescence and fluorescence. Journal of Bioluminescence and Chemiluminescence 10, 239–245.CrossRefGoogle Scholar
  45. 45.
    Blake, M. R. and Weiner, B. C. (1997) Immunomagnetic detection of Bacillus stearothermophilus spores in food and environmnetal samples. Appl. Environ. Microbiol. 63, 1643–1646.Google Scholar
  46. 46.
    Restaino, L., Frampton, E. W., Irbe, R. M., and Allison, D. R. K. (1997) A 5 h screening and 24 h confirmation procedure for detecting Escherichia coli O157:H7 in beef using direct epifluorescent microscopy and immunomagnetic separation. Lett. Appl. Microbiol. 24, 401–404.CrossRefGoogle Scholar
  47. 47.
    Walsh, L., Dooge, D., and Hill, C. (1997) Screening for Escherichia coli O157:H7 in Irish ground beef using two commercial detection systems. Irish Vet. J. 50, 111.Google Scholar
  48. 48.
    Besser, T. E., Hancock, D. D., Pritchett, L. C., McRae, E. M., Rice, D. H., and Tarr, P. I. (1997) Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. J. Infect. Dis. 175, 726–729.CrossRefGoogle Scholar
  49. 49.
    Gooding, C. M. and Choudary, P. V. (1997) Rapid and sensitive immunomagnetic separation-polymerase chain reaction method for the detection of Escherichia coli O157:H7 in raw milk and ice cream. J. Dairy Res. 64, 87–93.CrossRefGoogle Scholar
  50. 50.
    Bolton, E. J., Crozier, L., and Wilkinson, J. K. (1996) Isolation of Escherichia coli O157 from raw meat products. Lett. Appl. Microbiol. 23, 317–321.CrossRefGoogle Scholar
  51. 51.
    Gehring, A. G., Crawford, C. G., Mazenko, R. S., van Houten, L. J., and Brewster, J. D. (1996) Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium. J. Immunol. Methods 195, 15–25.CrossRefGoogle Scholar
  52. 52.
    Chapman, P. A. and Siddons, C. A. (1996) Evaluation of a commercial enzyme-immunoassay (EHEC-TEK) for detecting Escherichia coli O157 in beef and beef products. Food Microbiol. 13, 175–182.CrossRefGoogle Scholar
  53. 53.
    Chapman, P. A. and Siddons, C. A. (1996) A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from cases of bloody, non-bloody diarrhea and asymptomatic contacts. J. Med. Microbiol. 44, 267–271.CrossRefGoogle Scholar
  54. 54.
    Karch, H., Janetzkimittmann, C., Aleksic, S., and Datz, M. (1996) Isolation of enterohaemorrhagic Escherichia coli O157 strains from patients with hemolytic-uremic syndrome using immuno-magnetic separation, DNA-based methods and direct culture. J. Clin. Microbiol. 34, 516–519.Google Scholar
  55. 55.
    Cubbon, M. D., Coia, J. E., Hanson, M. F., and Thomson-Carter, F. M. (1996) A comparison of immunomagnetic separation, direct culture and polymerase chain reaction for the detection of verocytotoxin producing Escherichia coli O157 in human feces. J. Med. Microbiol. 44, 219–222.CrossRefGoogle Scholar
  56. 56.
    Sanderson, M. W., Gay, J. M., Hancock, D. D., Gay, C. C., Fox, L., and Besser, T. E. (1995) Sensitivity of bacteriological culture for detection of Escherichia coli O157:H7 in bovine feces. J. Clin. Microbiol. 33, 2616–2619.Google Scholar
  57. 57.
    Jinneman, K. C., Trost, P. A., Hill, W. E., Weagent, S. D., Bryant, J. L., Kaysner, C. A., and Wekell, M. M. (1995) Comparison of template preparation methods from foods for amplification of Escherichia coli O157 Shiga-like toxins type I and type II DNA by multiplex polymerase chain reaction. J. Food Protect. 58, 722–726.Google Scholar
  58. 58.
    Bennett, A. R., MacPhee, S., and Betts, R. P. (1995) Evaluation of methods for the isolation and detection of Escherichia coli O157 in minced beef. Lett. Appl. Microbiol. 20, 375–379.CrossRefGoogle Scholar
  59. 59.
    Weagant, S. D., Bryant, J. L., and Jinneman, K. C. (1995) An improved rapid technique for isolation of Escherichia coli O157:H7 from foods. J. Food Protect. 58, 7–12.Google Scholar
  60. 60.
    Wright, D. J., Chapman, P. A., and Siddons, C. A. (1994) Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect. 113, 31–39.CrossRefGoogle Scholar
  61. 61.
    Chapman, P. A., Wright, D. J., and Siddons, C. A. (1994) A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from bovine feces. J. Med. Microbiol. 40, 424–427.CrossRefGoogle Scholar
  62. 62.
    Hanai, K., Satake, M., Nakanishi, H., and Venkateswaran, K. (1997) Comparison of commercially available kits with standard methods for detection of Salmonella strains in foods. Appl. Environ. Microbiol. 63, 775–778.Google Scholar
  63. 63.
    Poppe, C., Elliott, L. A., and Duncan, C. L. (1996) Evaluation of immunomagnetic separation in combination with modified semi-solid Rappaport-Vassiliadis medium and Rambach agar for the isolation of Salmonella. J. Microbiol. Methods 25, 237–244.CrossRefGoogle Scholar
  64. 64.
    Mansfield, L. and Forsythe, S. (1996) Collaborative ring-trial of Dynabeads anti-Salmonella for immunomagnetic separation of stressed Salmonella cells from herbs and spices. Int. J. Food Microbiol. 29, 41–47.CrossRefGoogle Scholar
  65. 65.
    Coleman, D. J., Nye, K. J., Chick, K. E., and Gagg, C. M. (1995) A comparison of immunomagnetic separation plus enrichment with conventional Salmonella culture in the examination of raw sausages. Lett. Appl. Microbiol. 21, 249–251.CrossRefGoogle Scholar
  66. 66.
    Coleman, D. J., Chick, K. E., and Nye, K. J. (1995) An evaluation of immunomagnetic separation for the detection of salmonellas in raw chicken carcasses. Lett. Appl. Microbiol. 21, 152–154.CrossRefGoogle Scholar
  67. 67.
    Holt, P. S., Gast, R. K., and Greene, C. R. (1995) Rapid detection of Salmonella enteriditis in pooled liquid egg samples using a magnetic bead-ELISA system. J. Food Protect. 58, 967–972.Google Scholar
  68. 68.
    Cudjoe, K. S., Hagtvedt, T., and Dainty, R. (1995) Immunomagnetic separation of Salmonella from foods and their detection using immunomagnetic particle (IMP) ELISA. Int. J. Food Microbiol. 27, 11–25.CrossRefGoogle Scholar
  69. 69.
    Dziadkowiec, D., Mansfield, L., and Forsythe, S. (1995) The detection of Salmonella in skimmed milk powder enrichments using conventional methods and immunomagnetic separations. Lett. Appl. Microbiol. 20, 361–364.CrossRefGoogle Scholar
  70. 70.
    Cudjoe, K. S., Krona, R., and Olsen, T. E. (1994) IMS—a new selective enrichment technique for detection of Salmonella in foods. Int. J. Food Microbiol. 23, 159–165.CrossRefGoogle Scholar
  71. 71.
    Cudjoe, K. S., Krona, R., Gron, B., and Olsen, T. E. (1994) Use of ferrous sulphate and immunomagnetic separation to recover Salmonella enteritidis from raw eggs. Int. J. Food Microbiol. 23, 149–158.CrossRefGoogle Scholar
  72. 72.
    Rasmussen, H. N., Rasmussen, O. F., Christensen, H., and Olsen, J. E. (1995) Detection of Yersinia enterocolitica O-3 in fecal samples and tonsil swabs from pigs using IMS and PCR. J. Appl. Bacteriol. 78, 563–568.CrossRefGoogle Scholar
  73. 73.
    Monceyron, C. and Grinde, B. (1994) Detection of hepatitis A virus in clinical and environmental samples by immunomagnetic separation and PCR. J. Virol. Methods 46, 157–166.CrossRefGoogle Scholar
  74. 74.
    Grinde, B., Jonassen, T. O., and Ushijima, H. (1995) Sensitive detection of group-A rotaviruses by immunomagnetic separation and reverse transcription polymerase chain reaction. J. Virol. Methods 55, 327–338.CrossRefGoogle Scholar
  75. 75.
    Lopez-Sabater, E. I., Deng, M. Y., and Cliver, D. O. (1997) Magnetic immuno-separation PCR assay (MIPA) for detection of hepatitis A virus (HAV) in American oyster (Crassostrea virginica). Lett. Appl. Microbiol. 24, 101–124.CrossRefGoogle Scholar
  76. 76.
    Bruno, J. G. and Yu, H. (1996) Immunomagnetic-electrochemiluminescent detection of Bacillus anthracis spores in soil matrices. Appl. Environ. Microbiol. 62, 3474–3476.Google Scholar
  77. 77.
    Cebolla, A., Guzman, C., and de Lorenzo, V. (1996) Nondisruptive detection of activity of catabolic promoters of Pseudomonas putida with an antigenic surface reporter system. Appl. Environ. Microbiol. 62, 214–220.Google Scholar
  78. 78.
    Payne, M. J., Campbell, S., Patchett, R. A., and Kroll, R. G. (1992) The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. from pure cultures and foods. J. Appl. Bacteriol. 73, 41–52.CrossRefGoogle Scholar
  79. 79.
    Payne, M. J., Campbell, S., and Kroll, R. G. (1993) Separation of bacteria using agglutinins isolated from invertebrates. J. Appl. Bacteriol. 74, 276–283CrossRefGoogle Scholar
  80. 80.
    Kuhn, H.-M., Meier-Dieter, U., and Mayer, H. (1988) ECA, the common enterobacterial antigen. FEMS Microbiol. Rev. 54, 195–222.CrossRefGoogle Scholar
  81. 81.
    Sompolinksy, D., Hertz, J. B., Hoiby, N., Jensen, K., Mansa, B., and Samra, Z. (1980) An antigen common to a wide range of bacteria. 1. The isolation of a ‘common antigen’ from Pseudomonas aeruginosa. APMIS 88, 143–149.Google Scholar
  82. 82.
    Sompolinksy, D., Hertz, J. B., Hoiby, N., Jensen, K., Mansa, B., Pedersen, V. B., and Samra, Z. (1980). An antigen common to a wide range of bacteria. 2. A biochemical study of a ‘common antigen’ from Pseudomonas aeruginosa. APMIS 88, 253–260.Google Scholar
  83. 83.
    Currie, B. P., Freundich, L. F., Soto, M. A., and Casadevall, A. (1993) False-negative cerebrospinal fluid cryptococcal latex agglutination tests for patients with culture-positive cryptococcal meningitis. J. Clin. Microbiol. 31, 2519–2522.Google Scholar
  84. 84.
    Smith, M. D., Wuthiekanun, V., Walsh, A. L., and Pitt, T. L. (1993) Latex agglutination test for identification of Pseudomonas pseudomallei. J. Clin. Pathol. 46, 374–375.CrossRefGoogle Scholar
  85. 85.
    Zborowski, M., Malchesky, P. S., Jan, T.-F., and Hall, G. S. (1992) Quantitative separation of bacteria in saline solution using lanthanide Er(III) and a magnetic field. J. Gen. Microbiol. 138, 63–68.CrossRefGoogle Scholar
  86. 86.
    Harlow, E. and Lane, D. (1988) Antibodies, a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  87. 87.
    Porter, J., Mobbs, K., Hart, C. A., Saunders, J. R., Pickup, R. W., and Edwards, C. (1997) Detection, distribution and probable fate of Escherichia coli O157 from asymptomatic cattle on a dairy farm. J. Appl. Microbiol. 83, 297–306.CrossRefGoogle Scholar
  88. 88.
    Porter, J., Robinson, J., Pickup, R., and Edwards, C. (1998) An evaluation of lectin-mediated magnetic bead cell sorting for the targeted separation of enteric bacteria. J. Appl. Microbiol., 84, 722–732.CrossRefGoogle Scholar
  89. 89.
    Gattomenking, D. L., Yu, H., Bruno, J. G., Goode, M. T., Miller, M., and Zulich, A. W. (1995) Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosensors Bioelectronics 10, 501–507.CrossRefGoogle Scholar
  90. 90.
    Lelwalaguruge, J., Ascencio, F., Ljungh, A., and Wadstrom, T. (1993) Rapid detection and characterization of sialic acid specific lectins of Helicobacter pylori. APMIS 101, 695–702.CrossRefGoogle Scholar
  91. 91.
    Millar, D. S., Withey, S. J., Tizard, M. L. V., Ford, J. G., and Hermon-Taylor, J. (1995) Solid phase hybridization capture of low abundance target DNA sequences-application to the polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium aviam subsp silviticum. Anal. Biochem. 226, 325–330.CrossRefGoogle Scholar
  92. 92.
    Jacobsen, C. S. (1995) Microscale detection of specific bacterial-DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl. Environ. Microbiol. 61, 3347–3352.Google Scholar
  93. 93.
    Regan, P. M. and Margolin, A. B. (1997) Development of a nucleic acid capture probe with reverse transcriptase-polymerase chain reaction to detect poliovirus in groundwater. J. Virol. Methods 64, 65–72.CrossRefGoogle Scholar
  94. 94.
    Damgaard, P. H. Jacobsen, C. S., and Sorensen, J. (1996) Development and application of a primer set for specific detection of Bacillus thuringiensis and Bacillus cereus in soil using magnetic capture hybridisation and PCR amplification. Sys. Appl. Microbiol. 19, 436–441.CrossRefGoogle Scholar
  95. 95.
    Benkirane, R., Guinet, R., and Delaunay, T. (1992) Purification and immunological studies of the cross reaction between the 65 kilodalton Gonococcal parietal lectin and an antigen common to a wide range of bacteria. Infect. Immun. 60, 3468–3471.Google Scholar
  96. 96.
    Skjerve, E., Rorvik, L. M., and Olsvik, O. (1990) Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ. Microbiol. 56, 3478–3481.Google Scholar
  97. 97.
    Johne, B., Jarp, J., and Haaheim, L. R. (1989) Staphylococcus aureus exoplolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy. J. Clin. Microbiol. 27, 1631–1635.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Jonathan Porter
    • 1
  • Roger Pickup
    • 1
  1. 1.Institute of Freshwater EcologyCumbriaUK

Personalised recommendations