Synthesis of an Esterase-Sensitive Cyclic Prodrug of a Model Hexapeptide Having Enhanced Membrane Permeability and Enzymatic Stability Using an Acyloxyalkoxy Promoiety

  • Sanjeev Gangwar
  • Giovanni M. Pauletti
  • Teruna J. Siahaan
  • Valentino J. Stella
  • Ronald T. Borchardt
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)


The clinical development of orally active peptide drugs has been limited by their unfavorable physicochemical characteristics (e.g., charge, hydrogen bonding potential, size), which prevent them from permeating biological barriers such as the intestinal mucosa, and also their lack of stability against enzymatic degradation (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). Unfortunately, many of the structural features of peptides (i.e., the N-terminal amino group and C-terminal carboxyl group, and side chain carboxyl, amino, and hydroxyl groups) that bestow upon the molecule affinity and specificity for its pharmacological receptor severely restrict its ability to permeate biological barriers and make the molecules substrates for peptidases. Therefore, successful oral delivery of peptides depends on strategies designed to alter the physicochemical characteristics of these potential drugs without changing their biological activity in order to circumvent the intestinal epithelial cells.


  1. 1.
    Amidon, G. L. and Lee, H. J. (1994) Absorption of peptide and peptidomimetic drugs. Annu. Rev. Pharmacol. Toxicol. 34, 321–341.CrossRefGoogle Scholar
  2. 2.
    Burton, P. S., Conradi, R. A., Hilgers, A. R., Ho, N. F. H., and Maggiora, L. L. (1992) The relationship between peptide structure and transport across epithelial cell monolayers. J. Controlled Release 19, 87–98.CrossRefGoogle Scholar
  3. 3.
    Burton, P. S., Conradi, R. A., and Ho, N. F. H. (1993) Evidence for a polarized efflux system for peptides in the apical region of Caco-2 cells. Biochem. Biophys. Res. Commun. 190, 760–766.CrossRefGoogle Scholar
  4. 4.
    Bocci, V. (1990) Catabolism of therapeutic proteins and peptides with implications for drug delivery. Adv. Drug Delivery Rev. 4, 149–169.CrossRefGoogle Scholar
  5. 5.
    Burton, P. S., Hill, R. B., and Conradi, R. A. (1987) Metabolism and transport of peptides across the intestinal mucosa. Proc. Int. Symp. Control. Rel. Bioact. Mater. 14, 6–7.Google Scholar
  6. 6.
    Conradi, R. A., Hilgers, A. R., Ho, N. F. H., and Burton, P. S. (1992) The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm. Res. 9, 435–439.CrossRefGoogle Scholar
  7. 7.
    Conradi, R. A., Wilkinson, K. F., Rush, B. D., Hilgers, A. R., Ruwart, M. J., and Burton, P. S. (1993) In vitro/in vivo models for peptide oral absorption: comparison of Caco-2 cell permeability with rat intestinal absorption of renin inhibitory peptides. Pharm. Res. 10, 1790–1792.CrossRefGoogle Scholar
  8. 8.
    Lee, V. H. L. (1988) Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst. 5, 69–97.Google Scholar
  9. 9.
    Lee, V. H. L. and Yamamoto, A. (1990) Penetration and enzymatic barriers to peptide and protein absorption. Adv. Drug Delivery Rev. 4, 171–207.CrossRefGoogle Scholar
  10. 10.
    Lee, V. H. L., Dodda-Kashi, S., Grass, G. M., and Rubas, W. (1991) Oral route of peptide and protein delivery, in Peptide and Protein Drug Delivery (Lee, V. H. L., ed.), Marcel Dekker, New York, pp. 691–738.Google Scholar
  11. 11.
    Lee, V. H. L., Traver, R. D., and Taub, M. E. (1991) Enzymatic barriers to peptide and protein drug delivery, in Peptide and Protein Drug Delivery (Lee, V. H. L., ed.), Marcel Dekker, New York, pp. 303–357.Google Scholar
  12. 12.
    Zhou, X. H. (1994) Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J. Controlled Release 29, 239–252.CrossRefGoogle Scholar
  13. 13.
    Gray, R. A., Vander Velde, D. G., Burke, C. J., Manning, M. C, Middaugh, C. R., and Borchardt, R. T. (1994) Delta-sleep-inducing peptide: solution conformation studies of a membrane-permeable peptide. Biochemistry 33, 1323–1331.CrossRefGoogle Scholar
  14. 14.
    Alexander, J., Fromtling, R. A., Bland, J. A., Pelak, B. A., and Gilfillan, E. C. (1991) (Acyloxy)alkyl carbamate prodrugs of norfloxacin. J. Med. Chem. 34, 78–81.CrossRefGoogle Scholar
  15. 15.
    Folkmann, M. and Lund, F. J. (1990) Acyloxymethyl carbonochloridates. New intermediates in prodrug synthesis. Synthesis 1159–1166.Google Scholar
  16. 16.
    Gangwar, S., Pauletti, G. M., Siahaan, T. J., Stella, V. J., and Borchardt, R. T. (1996) Synthesis of a novel prodrug of a hexapeptide using acyloxyalkoxy promoiety which has increased stability to peptidase metabolism and increased cellular permeability. J. Org. Chem. 62, 1356–1362.CrossRefGoogle Scholar
  17. 17.
    Gogate, U. S., Repta, A. J., and Alexander, J. (1987) N-(Acyloxyalkoxycarbonyl) derivatives as potential prodrugs of amines. I. Kinetics and mechanism of degradation in aqueous solutions. Int. J. Pharm. 40, 235–248.CrossRefGoogle Scholar
  18. 18.
    Gogate, U. S. and Repta, A. J. (1987) N-(Acyloxyalkoxycarbonyl) derivatives as potential prodrugs of amines. II. Esterase-catalyzed release of parent amines from model prodrugs. J. Pharm. Sci. 40, 249–255.Google Scholar
  19. 19.
    Atherton, E. and Sheppard, R. C. (1989) Solid Phase Peptide Synthesis: A Practical Approach, 2nd ed., IRL, Oxford.Google Scholar
  20. 20.
    Greene, T. W. and Wuts, P. G. M. (1991) Protective Groups in Organic Synthesis, 2nd ed., John Wiley, New York, pp. 240–241.Google Scholar
  21. 21.
    Diago-Meseguer, J., Palomo-Coll, A. L., Fernandez-Lizarbe, J. R., and Zugaza-Bilbabo, A. (1980) A new reagent for activating carboxyl groups: Preparation and reaction of N,N-Bis(2-oxo-3-oxazolidinyl)-phosphinic chloride. Synthesis 547–551.Google Scholar
  22. 22.
    Pauletti, G. M, Gangwar, S., Okumu, F. W., Siahaan, T. J., Stella, V. J., and Borchardt, R. T. (1996) Esterase-sensitive cyclic prodrugs of peptides: Evaluation of the acyloxyalkoxy promoiety in a model hexapeptide. Pharm. Res. 13, 1615–1623.CrossRefGoogle Scholar
  23. 23.
    Hidalgo, I. J., Raub, T. J., and Borchardt, R. T. (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736–749.Google Scholar
  24. 24.
    Wilson, G., Hassan, I. F., Dix, C. J., Williamson, I., Shah, R., and Mackay, M. (1990) Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J. Controlled Release 11, 25–40.CrossRefGoogle Scholar
  25. 25.
    Pinto, M., Robine-Leon, S., Appay, M.D., Kedinger, M., Tradou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A. (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47, 323–330.Google Scholar
  26. 26.
    Artursson, P. (1990) Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79, 476–482.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Sanjeev Gangwar
    • 1
  • Giovanni M. Pauletti
    • 1
  • Teruna J. Siahaan
    • 1
  • Valentino J. Stella
    • 1
  • Ronald T. Borchardt
    • 1
  1. 1.Department of Pharmaceutical ChemistryThe University of KansasLawrence

Personalised recommendations