Motif-Dependent Polymerase Chain Reaction (PCR)

DNA Fingerprinting Enterotoxigenic Escherichia coli
  • Séamus Fanning
  • Deirdre O’Meara
  • Lesley Cotter
  • Paddy Greer
  • Bartley Cryan
Part of the Methods In Molecular Medicine™ book series (MIMB, volume 92)

Abstract

Fingerprinting techniques are essential tools in the investigation of transmissible diseases. Unless one is able to track a pathogenic organism from its reservoir, through its vectors and carriers into infected hosts, it is impossible to define an organism’s epidemiology. In the absence of such understanding public health and other measures directed toward the eradication of the infection are unlikely to succeed.

References

  1. 1.
    Sack, B. R. (1980) Enterotoxigenic Escherichia coli, identification and characterisation. J. Infect. Dis. 142, 279–286.PubMedGoogle Scholar
  2. 2.
    Versalovic, J., Woods, C. R., Georghiou, P. R., Hamill, R. J., and Lupski, J. R. (1993) DNA-based identification and epidemiologic typing of bacterial strains. Arch. Pathol. Lab. Med. 117, 1088–1098.PubMedGoogle Scholar
  3. 3.
    Caetano-Anollés, G. (1993) Amplifying DNA with arbitrary oligonucleotide primers. PCR Meth. Applic. 3, 85–94.Google Scholar
  4. 4.
    van Belkum, A. (1994) DNA fingerprinting of medically important microorganisms by use of PCR. Clin. Microbiol. Rev. 7, 174–184.PubMedGoogle Scholar
  5. 5.
    Versalovic, J., Schneider, M., de Bruijn, F., and Lupski, J. (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth. Cell Biol. 5, 25–40.Google Scholar
  6. 6.
    Towner, K. J. and Cockayne, A. (1993) tMolecular Methods for Microbial Identification and Typing. Chapman and Hall, London, UK.Google Scholar
  7. 7.
    Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.PubMedCrossRefGoogle Scholar
  8. 8.
    Williams, J. G. K., Kubelik, A. R., Livak, K. J., Antoni Rafalski, J., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res. 18, 6531–6535.Google Scholar
  9. 9.
    Veraslovic, J., Koeuth, T., and Lupski, J. R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 24, 6823–6831.CrossRefGoogle Scholar
  10. 10.
    Regnery, R. L., Spruill, C. L., and Plikaytis, B. D. (1991) Genotypic identification of rickettsiae and estimation of interspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 173, 1576–1589.PubMedGoogle Scholar
  11. 11.
    McClelland, M., Petersen, C., and Welsh, J. (1992) Length polymorphisms in tRNA intergenic spacers detected by using the polymerase chain reaction can distinguish streptococcal strains and species. J. Clin. Microbiol. 30, 1499–1504.PubMedGoogle Scholar
  12. 12.
    Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994) Development of an rRNA-targetted oligonucleotide probe for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60, 792–800.PubMedGoogle Scholar
  13. 13.
    Doll, L., Moshitch, S., and Frankel, G. (1993) Poly (GTG)5-associated profiles of Salmonella and Shigella genomic DNA. Res. Microbiol. 144, 17–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Higgins, C. F., Ames, G. F. L., Barnes, W. M., Clement, J. M., and Hofnung, M. (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298, 760–762.PubMedCrossRefGoogle Scholar
  15. 15.
    Stern, M. J., Ferro-Luzzi Ames, G., Smith, N. H., Robinson, E. C., and Higgins, C. F. (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37, 1015–1026.Google Scholar
  16. 16.
    Hulton, C. S. J., Higgins, C. F., and Sharp, P. M. (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium, and other enterobacteria. Mol. Microbiol. 5, 825–834.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., Morrison, D. A., Boulnois, G. J., and Claverys, J.-P. (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20, 3479–3483.PubMedCrossRefGoogle Scholar
  18. 18.
    Wenzel, R. and Herrmann, R. (1988) Repetitive DNA in Mycoplasma pneumoniae. Nucleic Acids Res. 16, 8337–8350.PubMedCrossRefGoogle Scholar
  19. 19.
    Sheehan, C., Lynch, M., Cullen, C., Cryan, B., Greer, P., and Fanning, S. (1995) Genomic fingerprinting Acinetobacter baumanii: amplification of multiple interrepetitive extragenic palindromic sequences. J. Hosp. Infect. 31, 33–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Cotter, L., Lynch, M., Cryan, B., Greer, P., and Fanning, S. (1997) Investigation of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak in an Irish hospital: triplex-PCR and DNA amplification fingerprinting. J. Hosp. Infect. 36, 37–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Versalovic, J., Kapur, V., Koeuth, T., Mazurek, G. H., Whittman, T. S., Musser, J. M., and Lupski, J. R. (1995) DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch. Pathol. Lab. Med. 119, 23–29.PubMedGoogle Scholar
  22. 22.
    Del Vecchio, V., Petroziello, J. M., Gress, M. J., McCleskey, F. K., Melcher, G. P., Crouch, H. K., and Lupski, J. R. (1995) Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophore-enhanced repetitive-sequence PCR. J. Clin. Microbiol. 33, 2141–2144.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Séamus Fanning
    • 1
  • Deirdre O’Meara
    • 1
  • Lesley Cotter
    • 1
  • Paddy Greer
    • 1
  • Bartley Cryan
    • 1
  1. 1.Department of Biological SciencesCork Regional Technical CollegeCorkIreland

Personalised recommendations