Production of a Human Antibody Library in the Phage-Display Vector pSEX81

  • Martin Welschof
  • Melvyn Little
  • Heinz Dörsam
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 13)


Human monoclonal antibodies (MAbs) are more suitable than MAbs of animal origin for clinical applications because of lower hypersensitivity reactions, less formation of circulating immune complexes and lower anti-immunoglobulin responses The classical production of human MAbs via the hybridoma technique or Epstein-Barr virus (EBV) transformation is limited by the instability of cell lines, low antibody production, and the problems of imununizing humans with certain antigens (1,2). A promising alternative 1s the production of human recombinant antibodies (3). Recombinant DNA technology has made it possible to clone human antibody genes in vectors and to generate antibody expression libraries (4–7). One approach has been to amplify and recombine the IgG repertoire of an “immunized” donor. This has been used to isolate several antibodies related to diseases (8,9). In order to obtain more universal antibody libraries the naive IgM repertoire of several “unimmunized” donors were pooled (10,12). The complexity of the combinatorial libraries has been further increased by creating the so-called “semisynthetic” antibody libraries (22, 14).


Polymerase Chain Reaction Product Polymerase Chain Reaction Cycle Restriction Buffer Calf Intestine Phosphatase Specific Polymerase Chain Reaction Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carson D. A. and Freimark B. D. (1986) Human lymphocyte hybridomas and monoclonal antibodies. Adv Immunol. 38, 275–377.PubMedCrossRefGoogle Scholar
  2. 2.
    Glassy M.C and Dillman R O.(1988) Molecular biotherapie with human monoclonal antibodies Mol Biother 1, 7–73.PubMedGoogle Scholar
  3. 3.
    Winter G and Milstein C (1991) Man made antibodies Nature 349, 293–299.PubMedCrossRefGoogle Scholar
  4. 4.
    McCafferty J, Griffiths A. D., Winter G, and Chiswell D J (1990) Phage antibodies. filamentous phage displaying antibody variable domains Nature 348, 552–554.PubMedCrossRefGoogle Scholar
  5. 5.
    Mullinax R L, Gross E. A., Amberg J R, Hay B N, Hogrefe H H, Kubitz M. M., Greener A, Alting-Mees M, Ardourel D, Short J. M, Sorge J. A, and Shoppes B. (1990) Identification of human antibody fragment clones specific for tetanus toxoid in bacteriophage lambda immunoexpression library Proc Natl Acad Sci USA 87, 8095–8099.PubMedCrossRefGoogle Scholar
  6. 6.
    Marks J. D., Hoogenboom H. R., Bonnert T. P., McGafferty J, Griffiths A D., and Winter G. (1991) By-passing immumzation. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbas C. F., Rosenblum J. S., and Lerner R. A (1993) Direct selection of antibodies that coordinate metals from semisynthetic combinatorial libraries Proc Natl Acad Sci USA 90, 6385–6389.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbas C. F., Collet T. A, Amberg W., Roben P., Binley J. M., Hoekstra D., Cababa D., Jones T. M., Williamson R. A, Pilkington G. R., Haigwood N L, Cabezas E., Satterthwait A. C, Sanz I., and Burton D. R. (1993) Molecular profile of an antibody response to HIV-1 as probed by recombmatorial libraries J.Mol.Biol. 230, 812–823.PubMedCrossRefGoogle Scholar
  9. 9.
    Rapoport B., Portolano S, and McLachlan S M (1995) Combinatorial libraries. new insights into human organ-specific autoantibodies. Immunol Today 16, 43–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Marks J D, Hoogenboom H. R., Bonnert T. P., McGafferty J., Griffiths A. D., and Winter G. (1991) By-passing immumzation Human antibodies from V-gene libraries displayed on phage. J Mol. Biol 222, 581–597.PubMedCrossRefGoogle Scholar
  11. 11.
    Griffiths A D, Malmquist M, Marks J D, Bye J M, Embleton M J, McCafferty J, Baler M., Hollinger K. P., Gorick B D, Hughes-Jones N. C., Hoogenboom H R, and Winter G (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBOJ 12, 725–734.Google Scholar
  12. 12.
    Hoogenboom H. R. and Winter G. (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol 227, 381–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Barbas C. F., Bain J D, Hoekstra D M, and Lerner R. A (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem Proc Natl Acad. SCL USA 89, 4457–4467.CrossRefGoogle Scholar
  14. 14.
    Hayashi N, Welschof M., Zewe M., Braunagel M., Dubel S., Breitling F., and Little M (1994) Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Bra/Techniques 17, 310–375.Google Scholar
  15. 15.
    Larrick J. W, Danielsson L, Brenner C A., Wallace E F., Abrahamson M., Fry K. E., and Borrebaeck C. A. K. (1989) Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells Biotechnology 7, 934–938.CrossRefGoogle Scholar
  16. 16.
    Marks J D, Tristem M, Karpas A, and Winter G (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes Eur J Immunol 21, 985–997.PubMedCrossRefGoogle Scholar
  17. 17.
    Campbell M J., Zelenetz A. D., Levy S, and Levy R. (1992) Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol Immunol. 29, 193–203.PubMedCrossRefGoogle Scholar
  18. 18.
    Barbas C. F., Bjorling E., Chiodi F, Dunlop N, Cababa D, Jones T. M, Zebedee S. L., Persson M. A A, Nara P. L., Norrby E., and Burton E A. (1992) Recombinant human Fab fragments neutralize human type I immunodeficiency virus in vitro Proc Natl Acad Sci USA 89, 9339–9343CrossRefGoogle Scholar
  19. 19.
    Welschof M, Terness P, Kolbinger F, Zewe M., D,bel S, Dórsam H., Hain C, Finger M, Jung M., Moldenhauer G., Hayashi N., Little M., and Opelz G. (1995) Amino acid sequence based PCR primers for the amplification of human heavy and light chain immunoglobulin variable region genes. J Immunol M 179, 203–274.CrossRefGoogle Scholar
  20. 20.
    Huston J. S., Levinson D., Mudgett-Hunter M., Tai M.-S, Novotny J., Margohes M. N., Ridge R. J., Bruccoleri R. E., Haber E, Crea R., and Oppermann H. (1988) Protein engineering of antibody binding sites recovery of specific activity in an anti-digoxin single-chain Fv analouge produced in Escherichia coli Proc Natl Acad Sci USA 85, 5879–5883.CrossRefGoogle Scholar
  21. 21.
    Bird R E., Hardman K. D., Jacobson J W., Johnson S., Kaufman B. M., Lee S-M., Lee T., Pope S H, Riordan G. S, and Whitlow M. (1988) Single-chain antigen-binding protems. Science 242, 423–426.PubMedCrossRefGoogle Scholar
  22. 22.
    Kabat E. A, Wu T. T, Perry H M, Gottesman K. S, and Foeller C. (1991) Sequences of proteins of immunologrcal interest. (5th ed.), U. S. Department of Health and Human Services. Public Health Service, National Institutes of Health NIH Publication No. 91-3242.Google Scholar
  23. 23.
    Vasicek T. J. and Leder P. (1990) Structure and expression of the human immunoglobulin 1 genes. J Exp Med. 172, 609–620.PubMedCrossRefGoogle Scholar
  24. 24.
    Dubel S., Brettling F., Fuchs P., Braunagel M., Klewmghaus I, and Little M. (1993) A family of vectors for surface display and production of antibodies. Gene 128, 97–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Chirgwin J. M., Przybyla A E., MacDonald R. J, and Rutter W J (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.PubMedCrossRefGoogle Scholar
  26. 26.
    Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction Anal Biochem 162, 156–159.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Martin Welschof
    • 1
  • Melvyn Little
    • 2
  • Heinz Dörsam
    • 2
  1. 1.Department of Transplantation ImmunologyUniversity of HeidelbergGermany
  2. 2.Recombinant Antibody GroupGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations