Advertisement

Detection of Mutations in Mycobacteria by PCR-SSCP (Single-Strand Conformation Polymorphism)

  • Amalio Telenti
  • Nadine Honoré
  • Stewart T. Cole
Part of the Methods in Molecular Biology™ book series (MIMB, volume 101)

Abstract

There are a number of techniques available for the detection and characterization of mutations that take advantage of the flexibility and power of polymerase chain reaction (PCR) (Table 1). Sequencing remains the gold standard, but it is not very efficient as a screening tool, in particular when evaluating large numbers of samples, or multiple or extended stretches of DNA. f the available techniques, single-strand conformation polymorphism analysis (SSCP) appears as one of the most versatile techniques, amenable to automation, and optimal for screening for known or unknown mutations.
Table 1

Main PCR-Based Strategies for Detection of Mutations

Technique

Relevant reference

Sequencing of PCR products

(16)

Mutation-specific priming

(17)

Restriction-enzyme analysts of PCR products

(18)

Selective ohgonucleotide hybridization

(19)

Constant denaturmg gel electrophoresis (CDGE)

(20)

Temperature gradient gel electrophoresis (TGGE)

(21)

Dtdeoxy tingerprmting

(22)

Heteroduplex formation analysis

(23)

Cleavase fragment-length polymorphism (CFLP)

(24)

Ribonuclease A cleavage of mismatched RNA.DNA duplexes

(25)

Single-strand conformation polymorphism (SSCP)

(1)

Keywords

Methyl Mercury SSCP Analysis Electrophoresis Unit SSCP Pattern Extended Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Orita, M, Iwahana, H, Kanazawa, H., Hayashi, K., and Sekiya, T (1989) Detection of polymorphisms of human DNA by electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86, 2766–2770CrossRefPubMedGoogle Scholar
  2. 2.
    Hayashi, K (1991) PCR-SSCP a rapid and sensitive method for detection of mutations in the genomic DNA PCR Meth Appl 1, 34–38Google Scholar
  3. 3.
    Iwahana, H., Yoshimoto, K, and Itakura, M (1992) Detection of point mutations by SSCP of PCR amplified DNA after endonuclease digestion BioTechniques 12, 64–66PubMedGoogle Scholar
  4. 4.
    Michaud, J., Brody, L C., and Steel, G (1992) Strand-separating conformational polymorphism analysis. efficacy of detection of point mutations in the human ornithine d-aminotransferase gene. Genomics 13, 389–394CrossRefPubMedGoogle Scholar
  5. 5.
    Heym, B., Honoré, N, Truffot-Pernot, C., Banerjee, A., Schurra, C, Jacobs, W R, Jr., van Embden, J D A, Grosset, J H., and Cole, S T (1994) Implications of multidrug resistance for the future of short course chemotherapy of tuberculosis. a molecular study Lancet 344, 293–298CrossRefPubMedGoogle Scholar
  6. 6.
    Telenti, A, Honoré, N., Bernasconi, C, March, J., Ortega, A., and Cole, S T. (1997) Genotypic assessment of isomazid and rifampin resistance in Mycobacterium tuberculosis. a blind study at reference laboratory level J Clin Microbiol 35, 719–723PubMedGoogle Scholar
  7. 7.
    Telenti, A., Imboden, P, Marchesi, F., Schmidheini, T, and Bodmer, T. (1993) Direct, automated detection of rifampm-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism Antimxrob Agents Chemother 37, 2054–2058.Google Scholar
  8. 8.
    Honoré, N and Cole, S T (1994) Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother 38, 238–242PubMedGoogle Scholar
  9. 9.
    Cooksey, R. C, Morlock, G. P, McQueen, A, Glickman, S. E, and Crawford, J T. (1996) Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from New York City Antimicrob Agents Chemother 40, 1186–1188.PubMedGoogle Scholar
  10. 10.
    Takiff, H E., Salazar, L., Guerrero, C., Philipp, W., Huang, W. M, Kreiswirth, B., Cole, S. T., Jacobs, W R, Jr, and Telenti, A. (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations Antimicrob Agents Chemother 38, 773–780PubMedGoogle Scholar
  11. 11.
    Scorpio, A and Zhang, Y (1996) Mutations in pncA, a gene encoding pyrazinamldase/nicotinamidase, cause resistance to the antituberculous drug pyrazmamide in tubercle bacillus. Nature Med 2, 662–667CrossRefPubMedGoogle Scholar
  12. 11b.
    Telenti, A., Philipp, W, Sreeratsan, S, Bernasconi, C., Stockbauer, K E, Wieles, B, Musser, J. M, Jacobs, W. R Jr (1997) The emb operon, a unique gene cluster of Mycobacterium, tuberculosis involved in resistance to ethanbutol. Nature Med 3, 567–570CrossRefPubMedGoogle Scholar
  13. 12.
    Telenti, A. and Persing, D. H (1996) Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis Res Microbiol. 147, 73–79Google Scholar
  14. 13.
    Peng, H., Du, M, Ji, J., Isaacson, P G., and Pan, L (1995) High resolution SSCP analysis using polyacrylamide agarose composite gel and a background-free silver staining method BioTechniques 19, 410–414.PubMedGoogle Scholar
  15. 14.
    Hongyo, T, Buzard, G S, Calve, R J, and Weghorst, C M (1993) “Cold SSCP.” a sample, rapid and non-radioactive method for optimized single strand conformation polymorphism analyses. Nucleic Acid Res 21, 3637–3642CrossRefPubMedGoogle Scholar
  16. 15.
    Vector, T. C., Pretorius, G. S., Felix, J. V., Jordaan, A. M., and van Helden, P. D (1996) katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent. Antimicrob. Agents Chemother 40, 1572.Google Scholar
  17. 16.
    Kapur, V., Ling-Ling, L., Hamrick, M R., Plikaytis, B. B, Shinnick, T M, Telenti, A., Jacobs, W. R., Jr, Banerjee, A, Cole, S, Yuen, K. Y., Clarridge, J. E., III, Kreiswirth, B., and Musser, J. M. (1995) Rapid Mycobactermm species assignment and unambiguous identification of mutations associated with atimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencmg. Arch Pathol Lab. Med 119, 138–130.Google Scholar
  18. 17.
    Kwok, S., Kellog, D. E., and Spasic, D. (1990) Effects of primer-template mismatches on the polymerase chain reaction. HIV–l model studies. Nucleic Acid Res 18, 999–1005.CrossRefPubMedGoogle Scholar
  19. 18.
    Uhl, J. R, Sandhu, G S., Kline, B C., and Cockerill, F.R (1996) PCR-RFLP detection of point mutations in the catalase-peroxidase gene (katG) of Mycobacterium tuberculosis associated with isoniazid resistance, in PCR Protocols for Emerging Infectious Diseases (Persing D. H, ed.), American Society for Microbiology, Washington, DC, pp. 144–149.Google Scholar
  20. 19.
    De Beenhouwer, H., Lhiang, Z., Jannes, G., Mijs, W., Machtelinck, L., Rossau, R., Traore, H., and Portaels, F. (1995) Rapid detection of rifampicm resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tubercle Lung Dis 76, 425–430.CrossRefGoogle Scholar
  21. 20.
    Boerresen, A.-L., Hovig, E., and Smith-Soerensen, B., (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Set USA 88, 8405–8409.CrossRefGoogle Scholar
  22. 21.
    Riesner, D., Steger, G, Wiese, U, Heibey, M, and Henco, K. (1992) Temperature-gradient gel electrophoresis for the detection of polymorphic DNA and for quantitative polymerase chain reaction. Electrophoresis 13, 632–636CrossRefPubMedGoogle Scholar
  23. 22.
    Felmlee, T. A., Liu, Q., Whelen, C., Williams, D., Sommer, S. S, and Persing, D. H. (1995) Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol 33, 1617–1623.PubMedGoogle Scholar
  24. 23.
    Williams, D. L, Waguespack, C, Eisenach, K., Crawford, J. T., Portaels, F., Salfinger, M., Nolan, C. N, Abe, C., Stich-Groh, V, and Gillis, T P. (1994) Characterization of rifampin resistance in pathogenic mycobacteria. Antimicrob. Agents Chemother 38, 2380–2386.PubMedGoogle Scholar
  25. 24.
    Lyamichev, V., Brow, M A D, and Dahlberg, J E. (1993) Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783CrossRefPubMedGoogle Scholar
  26. 25.
    Myers, R. M., Larm, Z, and Mamatts, T. (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA-DNA duplexes Science 230, 1242–1246.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Amalio Telenti
    • 1
  • Nadine Honoré
    • 2
  • Stewart T. Cole
    • 3
  1. 1.Institute of Medical MicrobiologyUniversity of BerneBerneSwitzerland
  2. 2.Unité de Génétique Mycobacterienne, Departement de Bacterilogie et MycologieInstitut PasteurParisFrance
  3. 3.Unite de Genetique Mycobacterienne, Departement de Bacteriologie et MycologieInstitut PasteurParisFrance

Personalised recommendations