Advertisement

mRNA Abundance and Half-Life Measurements

  • Alistair J. P. Brown
  • Francis A. Sagliocco
Protocol
  • 1.8k Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 53)

Abstract

The expression of many genes is regulated at multiple levels. For most genes, the predominant control is at transcription, and this is usually inferred from changes in mRNA levels that respond to specific stimuli. However, changes in mRNA stability may contribute to observed variation in mRNA abundance, and many such changes in mRNA stability probably remain undetected. The relative contributions of posttranscriptional regulatory circuits can only be detected by careful RNA analysis.

Keywords

mRNA Abundance Northern Analysis Filter Hybridization Fume Cupboard Morpholinopropanesulfonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Santiago, T. C., Bettany, A. J. E., Purvis, I. J., and Brown, A. J. P. (1986) The relationship between mRNA stability and length in Saccharomyces cerevisiae. Nucleic Acids Res. 14, 8347–8360.PubMedCrossRefGoogle Scholar
  2. 2.
    Bettany, A. J. E., Moore, P. A., Cafferkey, R., Bell, L. D., Goodey, A. R., Carter, B. L. A., and Brown, A. J. P. (1989) 5′-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5, 187–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Moore, P. A., Bettany, A. J. E., and Brown, A. J. (1990) Expression of a yeast glycolytic gene is subject to dosage limitation. Gene 89, 85–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Herrick, D., Parker, R., and Jacobson, A. (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 2269–2284.PubMedGoogle Scholar
  5. 5.
    Parker, R., Herrick, D., Peltz, S. W., and Jacobson, A. (1991) Methods Enzymol. 194, 415–423.PubMedCrossRefGoogle Scholar
  6. 6.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  7. 7.
    Lithgow, G. J. (1989) Transcription in the yeast Saccharomyces cerevisiae. PhD Thesis, University of Glasgow.Google Scholar
  8. 8.
    Herruer, M. H., Mager, W. H., Raue, H. A., Vreken, P., Wilms, E., and Planta, R. J. (1988) Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs. Nucleic Acids Res. 16, 7917–7929.PubMedCrossRefGoogle Scholar
  9. 9.
    Nonet, M., Scafe C., Sexton, J., and Young, R. (1987) Eukaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell Biol. 7, 1602–1611.PubMedGoogle Scholar
  10. 10.
    Zaman, Z., Brown, A. J. P., and Dawes, I. W. (1992) A 3′ transcriptional enhancer within the coding sequence of a yeast gene encoding the common subunit of two multi-enzyme complexes. Mol. Microbiol. 6, 239–246.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Alistair J. P. Brown
    • 1
  • Francis A. Sagliocco
    • 2
  1. 1.Department of Molecular and Cell Biology, Marischal CollegeUniversity of AberdeenScotland
  2. 2.Laboratoire de Genetique, Unité Associée CNRSUniversité de Bordeaux IlTalenceFrance

Personalised recommendations