Electrotransformation of the Spirochete Borrelia burgdorferi

  • D. Scott Samuels
Part of the Methods in Molecular Biology™ book series (MIMB, volume 47)

Abstract

Borrelia burgdorferi is an etiologic agent of Lyme disease, the most common arthropod-borne disease in the United States (1,2). The bacterium, a member of the spirochete phylum, has a genome predominantly composed of linear DNA molecules (3,4). Formulating a medium in which B. burgdorferi grows in vitro was the first step toward a genetic understanding of the physiology and pathogenesis of the organism (5,6). The growth of B. burgdorferi as single colonies in solid medium (7, 8, 9) has facilitated mutant isolation by selection (10,11), although a defined medium for selection of auxotrophs is not currently available. The transformation system described in this chapter will be useful for manipulating the spirochete on a molecular genetic level.

References

  1. 1.
    Steere, A. C. (1989) Medical progress. Lyme disease. N. Engl. J. Med. 321, 586–596.PubMedCrossRefGoogle Scholar
  2. 2.
    Barbour, A. G. and Fish, D. (1993) The biological and social phenomenon of Lyme disease. Science 260, 1610–1616.PubMedCrossRefGoogle Scholar
  3. 3.
    Hinnebusch, J. and Tilly, K. (1993) Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10, 917–922.PubMedCrossRefGoogle Scholar
  4. 4.
    Saint Girons, I., Old, I. G., and Davidson, B. E (1994) Molecular biology of the Borrelia, bacteria with linear replicons. Microbiology 140, 1803–1816.PubMedCrossRefGoogle Scholar
  5. 5.
    Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E., and Davis, J. P. (1982) Lyme disease—a tick-borne spirochetosis? Science 216, 1317–1319.PubMedCrossRefGoogle Scholar
  6. 6.
    Barbour, A. G. (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Med. 57, 521–525PubMedGoogle Scholar
  7. 7.
    Kurtti, T. J., Munderloh, U. G., Johnson, R. C., and Ahlstrand, G. G. (1987) Colony formation and morphology in Borrelia burgdorferi. J. Clin. Microbiol. 25, 2054–2058.PubMedGoogle Scholar
  8. 8.
    Bundoc, V. G. and Barbour, A. G. (1989) Clonal polymorphisms of outer membrane protein OspB of Borrelia burgdorferi Infect. Immun. 57, 2733–2741.PubMedGoogle Scholar
  9. 9.
    Rosa, P. A. and Hogan, D. M. (1992) Colony formation by Borrelia burgdorferi in solid medium: clonal analysis of osp locus variants, in First International Conference on Tick-Borne Pathogens at the Host-Vector Interface: An Agenda for Research (Munderloh, U. G. and Kurtti, T. J., eds.), University of Minnesota, St. Paul, pp. 95–103.Google Scholar
  10. 10.
    Šadžiene, A., Rosa, P. A., Thompson, P. A., Hogan, D. M., and Barbour, A. G. (1992) Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J. Exp. Med. 176, 799–809.PubMedCrossRefGoogle Scholar
  11. 11.
    Samuels, D. S., Marconi, R. T., Huang, W. M., and Garon, C. F. (1994) gyrB mutations in coumermycin A1-resistant Borrelia burgdorferi. J. Bacteriol. 176, 3072–3075.PubMedGoogle Scholar
  12. 12.
    Shigekawa, K. and Dower, W. J. (1988) Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. BioTechniques 6, 742–751.PubMedGoogle Scholar
  13. 13.
    Trevors, J. T., Chassy, B. M., Dower, W. J., and Blaschek, H. P. (1992) Electrotransformation of bacteria by plasmid DNA, in Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, pp. 265–290.Google Scholar
  14. 14.
    ter Huurne, A. A. H. M., van Houten, M., Muir, S., Kusters, J. G., van der Zeijst, B. A. M., and Gaastra, W. (1992) Inactivation of a Serpula (Treponema) hyodysenteriae hemolysin gene by homologous recombination: importance of this hemolysin in pathogenesis of S. hyodysenteriae in mice. FEMS Microbiol. Lett. 92, 109–114.CrossRefGoogle Scholar
  15. 15.
    Sambri, V. and Lovett, M. A. (1990) Survival of Borrelia burgdorferi in different electroporation buffers. Microbiologica 13, 79–83.PubMedGoogle Scholar
  16. 16.
    Samuels, D. S., Mach, K. E., and Garon, C. F. (1994) Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J. Bacteriol. 176, 6045–6049.PubMedGoogle Scholar
  17. 17.
    Samuels, D. S. and Garon, C. F. (1993) Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in Borrelia burgdorferi, the Lyme disease agent. Antimicrob. Agents Chemother. 37, 46–50.PubMedGoogle Scholar
  18. 18.
    Cinco, M. (1992) Selection of a Borrelia burgdorferi antigenic variant by cultivation in the presence of increasing amounts of homologous immune serum. FEMS Microbiol. Lett. 92, 15–18.CrossRefGoogle Scholar
  19. 19.
    Coleman, J. L., Rogers, R. C., and Benach, J. L. (1992) Selection of an escape variant of Borrelia burgdorferi by use of bactericidal monoclonal antibodies to OspB. Infect. Immun. 60, 3098–3104.PubMedGoogle Scholar
  20. 20.
    Dower, W. J., Chassy, B. M., Trevors, J. T., and Blaschek, H. P. (1992) Protocols for the transformation of bacteria by electroporation, in Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, pp. 485–499.Google Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • D. Scott Samuels
    • 1
  1. 1.Bacterial Pathogenesis Section, Rocky Mountain Laboratories Microscopy BranchNational Institute of Allergy and Infectious DiseasesHamilton

Personalised recommendations