Advertisement

Electroporation and Efficient Transformation of Enterococcus faecalis Grown in High Concentrations of Glycine

  • Brett D. Shepard
  • Michael S. Gilmore
Part of the Methods in Molecular Biology™ book series (MIMB, volume 47)

Abstract

Enterococci are the focus of increasing academic and clinical research because of their importance as agents in nosocomial infections that are frequently refractory to many commonly used antimicrobial agents (1, 2, 3). To facilitate studies on the pathogenic and drug resistance mechanisms associated with enterococcal infection, techniques for the efficient introduction of exogenous DNA have been developed. This chapter provides a description of a protocol used routinely to transform Enterococcus faecalis by electroporation. The efficient transformation achieved by this method results from the combined use of an agent to weaken the cell wall during the production of cells competent for electroporation and an osmotic stabilizer to preserve the integrity of the cell throughout the process.

Keywords

Transformation Efficiency High Transformation Efficiency Osmotic Stabilizer Electroporation Cuvet Electrocompetent Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schaberg, D., Culver, D. H., and Gaynes, R. P. (1991) Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91(Suppl. 3B), 72S–75S.PubMedCrossRefGoogle Scholar
  2. 2.
    Moellering, R. C., Jr. (1992) Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis. 14, 1173–1178.PubMedCrossRefGoogle Scholar
  3. 3.
    Leclercq, R., Dutka-Malen, S., Brissom-Noël, A., Molinas, C., Derlot, E., Arthur, M., Duval, J., and Courvalin, P. (1992) Resistance of Enterococci to aminoglycosides and glycopeptides. Clin. Infect. Dis. 15, 495–501.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsien, H. C., Shockman, G. D., and Higgins, M. L. (1978) Structural arrangement of polymers within the wall of Streptococcus faecalis. J. Bacteriol. 133, 372–386.PubMedGoogle Scholar
  5. 5.
    Beveridge, T. J. (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 72, 229–317.PubMedCrossRefGoogle Scholar
  6. 6.
    Potter, H. (1993) Application of electroporation in recombinant DNA technology. Methods Enzymol. 217, 461–478.PubMedCrossRefGoogle Scholar
  7. 7.
    Powell, I. B., Achen, M. G., Hillier, A. J., and Davidson, B. E. (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol. 54, 655–660.PubMedGoogle Scholar
  8. 8.
    Luchansky, J. B., Muriana, P. M., and Klaenhammer, T. R. (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Mol. Microbiol. 2, 637–646.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunny, G. M., Lee, L. N., and LeBlanc, D. J. (1991) Improved electroporation and cloning vector system for Gram-positive bacteria. Appl. Environ. Microbiol. 57, 1194–1201.PubMedGoogle Scholar
  10. 10.
    Cruz-Rodz, A. L. and Gilmore, M. S. (1990) High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Mol. Gen. Genet. 224, 152–154.PubMedCrossRefGoogle Scholar
  11. 11.
    McIntyre, D. A. and Harlander, S. K. (1989) Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation. Appl. Environ. Microbiol. 55, 604–610.PubMedGoogle Scholar
  12. 12.
    van der Lelie, D. J., van der Vossen, J. M. B. M., and Venema, G. (1988) Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Appl. Environ. Microbiol. 54, 865–871.PubMedGoogle Scholar
  13. 13.
    Bhowmik, T. and Steele, J. L. (1993) Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ 32. J. Gen. Microbiol. 139, 1433–1439.Google Scholar
  14. 14.
    Park, S. F. and Stewart, G. S. A. B. (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94, 129–132.PubMedCrossRefGoogle Scholar
  15. 15.
    Holo, H. and Nes, I. F. (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123.PubMedGoogle Scholar
  16. 16.
    Bringel, F. and Hubert, J.-C. (1990) Optimized transformation by electroporation of Lactobacillus plantarum strains with plasmid vectors. Appl. Microbiol. Biotechnol. 33, 664–670.CrossRefGoogle Scholar
  17. 17.
    Jacob, A. E. and Hobbs, S. J. (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J. Bacteriol. 117, 360–372.PubMedGoogle Scholar
  18. 18.
    Yagi, Y. and Clewell, D. B. (1980) Recombinant-deficient mutant of Streptococcus faecalis. J. Bacteriol. 143, 966–970.PubMedGoogle Scholar
  19. 19.
    Clewell, D. B., Tomich, P. K., Gawron-Burke, G., Franke, A. E., Yagi, Y., and An, F. Y. (1982) Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J. Bacteriol. 152, 1220–1230.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Brett D. Shepard
    • 1
  • Michael S. Gilmore
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City

Personalised recommendations