The Plant Oncogenes rolA, B, and C from Agrobacterium rhizogenes

Effects on Morphology, Development, and Hormone Metabolism
  • Tony Michael
  • Angelo Spena
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)

Abstract

The soil pathogen Agrobacterium rhizogenes is the etiological agent of hairy root disease and can incite tumor formation on many dicotyledonous plants (1). The disease is so-called because abundant fine roots that resemble hair develop at the site of infection. A segment of the large Ri plasmid, the T-DNA or transferred DNA, is mobilized from the bacterium into the plant genome, thereby initiating the disease (2, 3, 4). The T-DNA may consist of one region (e.g., Ri plasmid 8196) or two separate regions, termed the TL-DNA and the TR-DNA. Axenic growth of transformed roots in liquid culture is typically fast, highly branched, and hormone independent.

References

  1. 1.
    De Cleene, M. and De Ley, J. (1981) The host range of infectious hairy root. Bot. Rev. 47, 147–194.CrossRefGoogle Scholar
  2. 2.
    Chilton, M.-D., Tepfer, D., Petit, A., David, C., Casse-Delbart, F., and Tempe, J. (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295, 432–434.CrossRefGoogle Scholar
  3. 3.
    White, F. F., Ghidossi, G., Gordon, M. P., and Nester, E. (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc. Natl. Acad. Sci. USA 79, 3193–3197.PubMedCrossRefGoogle Scholar
  4. 4.
    Willmitzer, L., Sanchez-Serrano, J., Bushfeld, E., and Schell, J. (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root tissue. Mol. Gen. Genet. 186, 16–22.CrossRefGoogle Scholar
  5. 5.
    Ackermann, C. (1977) Pflanzen aus Agrobacterium rhizogenes Tumoren an Nicotiana tabacum. Plant Sci. Lett. 8, 23–30.CrossRefGoogle Scholar
  6. 6.
    Tepfer, D. (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 47, 959–967.CrossRefGoogle Scholar
  7. 7.
    White, F. F., Taylor, B. B., Huffman, G. A., Gordon, M. P., and Nester, E. (1985) Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164, 33–44.PubMedGoogle Scholar
  8. 8.
    Slightom, J., Durand-Tardif, M., Jouanin, L., and Tepfer, D. (1986) Nucleotide sequence analysis of the TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J. Biol. Chem. 261, 731–744.Google Scholar
  9. 9.
    Jouanin, L., Vilaine, F., Tourneur, J., Tourneur, C., Pautot, V., Muller, J. F., and Caboche, M. (1987) Transfer of a 4.3 kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the hairy root phenotype to regenerated tobacco plants. Plant Sci. 53, 53–63.CrossRefGoogle Scholar
  10. 10.
    Spena, A., Schmülling, T., Koncz, C., and Schell, J. (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J. 6, 3891–3899.PubMedGoogle Scholar
  11. 11.
    Odell, J. T., Nagy, F., and Chua, N.-H. (1985) Identification of DNA sequences required for the activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812.PubMedCrossRefGoogle Scholar
  12. 12.
    Oono, Y., Handa, T., Kanaya, K., and Uchimiya, H. (1987) The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn. J. Genet. 62, 501–505.CrossRefGoogle Scholar
  13. 13.
    Schmulling, T., Schell, J., and Spena, A. (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7, 2621–2629.PubMedGoogle Scholar
  14. 14.
    Fladung, M. (1990) Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterisation of transgenic plants. Plant Breeding 104, 295–304.CrossRefGoogle Scholar
  15. 15.
    Spena, A., Aalen, R. D., and Schulze, S. C. (1989) Cell-autonomous behaviour of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants. Plant Cell 1, 1157–1164.PubMedCrossRefGoogle Scholar
  16. 16.
    Spena, A., Estruch, J. J., Prinsen, E., Nacken, W., Van Onckelen, H., and Sommer, H. (1992) Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor. Appl. Genet. 84, 520–527.CrossRefGoogle Scholar
  17. 17.
    Vilaine, F., Charbonnier, C., and Casse-Delbart, F. (1987) Further insight concerning the TL-DNA region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol. Gen. Genet. 280, 111–115.CrossRefGoogle Scholar
  18. 18.
    Sinkar, V. P., White, F. F., Furner, I. J., Abrahamsen, M., Pythoud, F., and Gordon, M. P. (1988) Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol. 86, 584–590.PubMedCrossRefGoogle Scholar
  19. 19.
    Sinkar, V. P., Pythoud, F., White, F., Nestor, E., and Gordon, M. (1988) rolA locus of the Ri plasmid directs developmental abnormalities in transgenic plants. Genes Dev. 2, 688–698.PubMedCrossRefGoogle Scholar
  20. 20.
    Spanò, L., Mariotti, D., Cardarelli, M., Branca, C., and Costantino, P. (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol. 87, 479–483.PubMedCrossRefGoogle Scholar
  21. 21.
    Shen, W. H., Petit, A., Guern, J., and Tempé, J. (1988) Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA 85, 3417–3421.PubMedCrossRefGoogle Scholar
  22. 22.
    Maurel, C., Barbier-Brygoo, H., Brevet, J., Spena, A., Tempé, J., and Guern, J. (1991) Agrobacterium rhizogenes T-DNA genes and sensitivity of plant protoplasts to auxins, in Advances in Molecular Genetics of Plant-Microbe Interactions (Hennecke, H., and Verma, D. P. S., eds.), Kluwer, Dordrecht, The Netherlands, pp. 343–351.Google Scholar
  23. 23.
    Martin-Tanguy, J., Tepfer, D., Paynot, M., Burtin, D., Heisler, L., and Martin, C. (1990) Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the root inducing left-hand transferred DNA from Agrobacterium rhizogenes. Plant Physiol. 92, 912–918.PubMedCrossRefGoogle Scholar
  24. 24.
    Sun, L. Y., Monneuse, M.-O., Martin-Tanguy, J., and Tepfer, D. (1991) Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci. 80, 145–156.CrossRefGoogle Scholar
  25. 25.
    Schmülling, T. (1988) Studien zum Einfluss der rolA, B und C Gene der TL-DNA von Agrobacterium rhizogenes auf die Pflazenentwicklung. Unpublished doctoral dissertation, Universität zu Koln, Köln, Germany.Google Scholar
  26. 26.
    Moore, T. C. (1979) Biochemistry and physiology of plant hormones, 2nd ed., Springer, New York.Google Scholar
  27. 27.
    Estruch, J. J., Parets-Soler, T., Schmulling, T., and Spena, A. (1991) Cytosolic localisation in transgenic plants of the rolC peptide from Agrobacterium rhizogenes. Plant Mol. Biol. 17, 547–550.PubMedCrossRefGoogle Scholar
  28. 28.
    Matthysse, A. G., and Scott, T. K. (1984) Functions of hormones at the whole plant level of organisation, in Encyclopedia of Plant Physiology, vol. 10 (Scott, T. K., ed.), Springer, Berlin, pp. 219–243.Google Scholar
  29. 29.
    Smigocki, A. C., and Owens, L. D. (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc. Natl. Acad. Sci. USA 85, 5131–5135.PubMedCrossRefGoogle Scholar
  30. 30.
    Letham, D. S., and Palni, L. M. S. (1983) The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. 34, 163–197.CrossRefGoogle Scholar
  31. 31.
    Reinecke, D. M., and Bandurski, R. S. (1987) Auxin biosynthesis and metabolism, in Plant Hormones and Their Role in Plant Growth and Development (Davies, P. J., ed.), Martinus Nijhoff, Dordrecht, pp. 24–42.CrossRefGoogle Scholar
  32. 32.
    Estruch, J., Chriqui, D., Grossmann, K., Schell, J., and Spena, A. (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10, 2889–2895.PubMedGoogle Scholar
  33. 33.
    Van Staden, J. and Papaphillopou, A. P. (1977) Biological activity of O-β-D-glucopyranosylzeatin Plant Physiol. 60, 649,650.PubMedCrossRefGoogle Scholar
  34. 34.
    Spena, A., Estruch, J. J., Hansen, G., Langenkemper, K., Berger, S., and Schell, J. (1992) The rhizogenes tale: modification of plant growth and physiology by an enzymatic system of hydrolysis of phytohormone conjugates, in Advances in Molecular Genetics of Plant-Microbe Interactions (Nester, E. W. and Verma, D. P. S., eds.), Kluwer, Dordrecht, The Netherlands, pp. 109–124.Google Scholar
  35. 35.
    Campos, N., Bako, L., Feldwisch, J., Schell, J., and Palme, K. (1992) A protein from maize labeled with azido-IAA has novel β-glucosidase activity. Plant J. 2, 675–684.CrossRefGoogle Scholar
  36. 36.
    Barbier-Brygoo, H., Guern, J., Ephritikhine, G., Shen, W. H., Maurel, C., and Klambt, D. (1990) The sensitivity of plant protoplasts to auxin: modulation of receptors at the plasmalemma, in Plant Gene Transfer, UCLA Symposia on Molecular and Cellular Biology (New Series), vol. 129 (Lamb, C. J., and Beachy, R. N., eds.), LISS, New York, pp. 165–173.Google Scholar
  37. 37.
    Estruch, J., Schell, J., and Spena, A. (1991) The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J. 10, 3125–3128.PubMedGoogle Scholar
  38. 38.
    Levesque, H., Delepelaire, P., Rouzé, P., Slightom, J., and Tepfer, D (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNA of Agrobacterium tumefaciens. Plant Mol. Biol. 11, 731–744.CrossRefGoogle Scholar
  39. 39.
    Romano, C. P., Hein, M. B., and Klee, H. J. (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 5, 438–446.PubMedCrossRefGoogle Scholar
  40. 40.
    Spena, A., Prinsen, E., Fladung, M., Schulze, S., and Van Onckelen, H. (1991) The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol. Gen. Genet. 227, 205–212.PubMedCrossRefGoogle Scholar
  41. 41.
    Dehio, C. (1992) Isolierung und Charakterisierung von Suppressormutanten der Phanotypen rolA und rolB transgener Arabidopsrs thaliana Pflanzen. Unpublished doctoral dissertation, Universitat zu Koln, Koln, Germany.Google Scholar
  42. 42.
    Walden, R., Czaja, I., Schmülling, T., and Schell, J. (1993) Rol genes alter hormonal requirements for protoplast growth and modify the expression of an auxin responsive promoter. Plant Cell Rep. 12, 551–555.CrossRefGoogle Scholar
  43. 43.
    Hansen, G., Larribe, M., Vaubert, D., Tempé, J., Biermann, B., Montoya, A., Chilton, M.-D., and Brevet J. (1991) Agrobacterium rhizogenes pRi8196 T-DNA. mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc. Natl. Acad. Sci. USA 88, 7763–7767.PubMedCrossRefGoogle Scholar
  44. 44.
    Furner, I., Huffman, G. A., Amasino, R. M., Garfinkel, D. J., Gordon, M. P., and Nestor, E. W. (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 329, 424–427.Google Scholar
  45. 45.
    Ichikawa, T., Ozeki, Y., and Syono, K. (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumours of N. glauca x N. langsdorffi. Mol. Gen. Genet. 220, 177–180.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilchrist, D., and Kosuge, T. (1980) Aromatic amino acid synthesis, in The Biochemistry of Plants (Miflin, B. J., ed.), Academic, New York, pp. 507–531.Google Scholar
  47. 47.
    Singh, M., and Widholm, J. M. (1975) Biochem. Genet. 13, 357–367.PubMedCrossRefGoogle Scholar
  48. 48.
    Magrelli, A., Langenkemper, K., Dehio, C., Schell, J., and Spena, A. (1994) Splicing of the rolA transcript of Agrobacterium rhizogenes in Arabidosis. Science 266, 1986–1988.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Tony Michael
    • 1
  • Angelo Spena
    • 2
  1. 1.AFRC Institute of Food ResearchNorwich Research ParkColney, NorwichUK
  2. 2.Max Planck Institüt für ZüchtungsforschungKölnGermany

Personalised recommendations