Advertisement

Scale-Up of Oligonucleotide Synthesis

Solution Phase
  • H. Seliger
Part of the Methods in Molecular Biology book series (MIMB, volume 20)

Abstract

Solution-phase methods have been used for the first synthesis of an internucleotidic bond (1) and, some 20 years ago, had a glorious period during the first gene synthesis. At that time, their present-day competitor, the polymer support technique, was also developed and saw some first applications to oligonucleotide preparations (2), but it took nearly 15 further years until the solid-phase methods became a serious rival to solution methods. The efficiency of the phosphoramidite chemistry, combined with the development of mechanization, brought about a dramatic change ca. 10 years ago, putting polymer-support synthesis into first place. Yet, solution methods were never completely replaced, and the following survey will testify to their vitality.

Keywords

Solution Synthesis Oligonucleotide Synthesis Polymeric Reagent Polynucleotide Phosphorylase Nucleoside Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Michelson, A. M. and Todd, A. R. (1955) Nucleotides Part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′:5′-internucleotidic linkage. J. Chem. Soc. 2632–2638.Google Scholar
  2. 2.
    Letsinger, R. L. and Mahadevan, V. (1965) Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3526,3527; Cramer, F., Helbig, R., Hettler, H., Scheit, K.-H., and Seliger, H. (1966) Oligonucleotide synthesis on a soluble polymer as carrier. Angew. Chem. 78, 640; Angew. Chem. Int. Ed. Engl. 5, 601; Hayatsu, H. and Khorana, H. G. (1966) Deoxyribooligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 88, 3182, 3183.CrossRefGoogle Scholar
  3. 3.
    Letsinger, R. L., and Ogilvie, K. K. (1967) A convenient method for stepwise synthesis of oligothymidylate derivatives in large-scale quantities. J. Am. Chem. Soc. 89, 4801–4803.CrossRefGoogle Scholar
  4. 4.
    Crea, R., Kraszewski, A. Hirose, T., and Itakura, K. (1978) Chemical synthesis of genes for human insulin. Proc. Natl. Acad. Sci. USA 75, 5765–5769; Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A. D. (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. USA 76, 106–110.CrossRefGoogle Scholar
  5. 5.
    Geiser, T. (1990) Large-scale economic synthesis of antisense phosphorothioate analogs of DNA for preclinical investigations. Ann. NY Acad. Sci. 616, 173–183.CrossRefGoogle Scholar
  6. 6.
    Rosenthal, A., Cech, D., and Shabarova, Z. A. (1983) Chemische Synthese von DNA-Sequenzen. Z. Chem. 23, 317–327.CrossRefGoogle Scholar
  7. 7.
    Itakura, K. Rossi, J. J., and Wallace, R. B. (1984) Synthesis and use of synthetic oligonucleotides. Ann. Rev. Biochem. 53, 323–356 and references therein.CrossRefGoogle Scholar
  8. 8.
    Sonveaux, E. (1986) The organic chemistry underlying DNA synthesis. Bioorg. Chem. 14, 274–325.CrossRefGoogle Scholar
  9. 9.
    Gassen, H. G. and Lang, A. (eds.) (1982) Chemical and Enzymatic Synthesis of Gene Fragments. A Laboratory Manual. Verlag, Weinheim.Google Scholar
  10. 10.
    Gait, M. J. (ed.) (1984) Oligonucleotide Synthesis—A Practical Approach. IRL, Oxford.Google Scholar
  11. 11.
    Gait, M. J. (1990) Nucleic Acids in Chemistry and Biology. (Blackburn, G. M. and Gait, M. J., eds.), IRL, Oxford.Google Scholar
  12. 12.
    Khorana, H. G. (1979) Total synthesis of a gene. Science 203, 614–625, and literature cited there.CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Yang, Z., Wang, Q., Xu, Y., Liu, X., Xu, J. F., and Chen, C. (1986) The role of metaphosphate in the activation of the nucleotide by TPS and DCC in the oligonucleotide synthesis. Nucl. Acids Res. 14, 2699–2706.CrossRefGoogle Scholar
  14. 14.
    Zarytova, V. F., and Knorre, D. G. (1984) General scheme of the phospho-triester condensation in the oligodeoxyribonucleotide synthesis with arylsulfonyl chlorides and arylsulfonyl azolides. Nucl. Acids Res. 12, 2091–2110.CrossRefGoogle Scholar
  15. 15.
    Efimov, V. A., Buryakova, A. A., Reverdatto, S. V., Chakhmakhcheva, O. G., and Ovchinnikov, Y. A. (1983) Rapid synthesis of long-chain deoxyribooligonucleotides by the N-methylimidazolide phosphotriester method. Nucl. Acids Res. 11, 8369–8387.CrossRefGoogle Scholar
  16. 16.
    Dobrynin, V. N., Bystrov, N. S., Chernov, B. K., Severtsova, V., and Kolosov, M. N. (1979) Nucleophilic catalysis of phosphorylation by phosphorotriazolidates in the triester synthesis of oligonucleotides. Bioorg. Khim. 5, 1254–1256.Google Scholar
  17. 17.
    Efimov, V. A., Chakhmakhcheva, O. G., and Reverdatto, S. V. (1987) Nucleophilic catalysis in the oligonucleotide synthesis, in Biophosphates and Their Analogs—Synthesis, Structure, Metabolism and Activity (Bruzik, K. S. and Stec, W. J., eds.), Elsevier Science, Amsterdam, pp. 23–36.Google Scholar
  18. 18.
    Hotoda, H., Wada, T. Sekine, M., and Hata, T. (1987) Tris-(2,4,6-tribromophenoxy)dichlorophosphorane:a novel condensing agent for rapid internucleotidic bond formation in the phosphotriester approach. Tetrahedron Lett. 28, 1681–1684.CrossRefGoogle Scholar
  19. 19.
    Sekine, M, Hamaoki, K., and Hata, T. (1981) Synthesis and properties of 5,5-diaryl thymidine phosphorodithioates. Bull. Chem. Soc. Jpn. 54, 3815–3827.CrossRefGoogle Scholar
  20. 20.
    Gdaniec, Z., Mielewczyk, S., and Adamiak, R. W. (1987) Side reactions in oligonucleotide synthesis. 31P NMR study of 4-chlorophenyl-phosphoro-di/1,2,4-triazolide/preparations and their reactivity toward nucleoside lactam systems, in Biophosphates and Their Analogs—Synthesis, Structure, Metabolism and Activity (Bruzik, K. S. and Stec, W. J., eds.), Elsevier Science, Amsterdam, pp. 127–132.Google Scholar
  21. 21.
    Welch, C. J., Zhou, X.-X., Remaud, G., and Chattopadhyaya, J. (1987) Some aspects of reactivity and protection of the imide functions of uridine and guanosine in nucleic acid synthesis, in Biophosphates and Their Analogs—Synthesis, Structure, Metabolism and Activity (Bruzik, K. S. and Stec, W. J., eds.), Elsevier Science, Amsterdam, pp. 107–125.Google Scholar
  22. 22.
    Letsinger, R. L., Finnan, J. L., Heavner, G. A., and Lunsford, W. B. (1975) Phosphite coupling procedure for generating internucleotide links. J. Am. Chem. Soc. 97, 3278, 3279; Letsinger, R. L. and Lunsford, W. B. (1976) Synthesis of thymidine oligonucleotides by phosphite-triester intermediates. J. Am. Chem. Soc. 98, 3655–3661.CrossRefGoogle Scholar
  23. 23.
    Beaucage, S. L. and Caruthers, M. H. (1981) Deoxynucleoside phosphor-amidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862.CrossRefGoogle Scholar
  24. 24.
    Caruthers, M. H. (1987) DNA synthesis for nonchemists: the phosphoramidite method on silica supports, in Synthesis and Application of DNA and RNA (Narang, S. A., ed.) Academic, London, pp. 47–94.Google Scholar
  25. 25.
    Berner, S., Mühlegger, K., and Seliger, H. (1989) Studies on the role of tetrazole in the activation of phosphoramidites. Nucl. Acids Res. 17, 853–863.CrossRefGoogle Scholar
  26. 26.
    Nagai, H., Fujiwara, T., Fujii, M., Sekine, M., and Hata, T. (1989) Reinvestigation of deoxyribonucleoside phosphorothioites: synthesis and properties of deoxyribonucleoside 3′-dimethylphosphites. Nucl. Acids Res. 17, 8581–8593.CrossRefGoogle Scholar
  27. 27.
    Hall, R. H., Todd, A., and Webb, R. F. (1957) Nucleotides. Part XLI. Mixed anhydrides as intermediates in the synthesis of dinucleoside phosphates. J. Chem. Soc. 3291–3296.Google Scholar
  28. 28.
    Garegg, P. J., Regberg, T., Stawinski, J., and Stromberg, R. (1985) Formation of internucleotidic bonds via phosphonate intermediates. Chemica Scripta, 25, 280–282.Google Scholar
  29. 29.
    Froehler, B. C. and Matteucci, M. D. (1986) Nucleoside H-phosphonates: valuable intermediates in the synthesis of deoxyoligonucleotides. Tetrahedron Lett. 26, 469–472.CrossRefGoogle Scholar
  30. 30.
    Jager, A., Charubala, R., and Pfleiderer, W. (1987) Synthesis and characterization of deoxy-and ribo H-phosphonate dimers. Nucleic Acid Symp. Ser. 18, 197–200.Google Scholar
  31. 31.
    Kuyl-Yeheskiely, E., Spierenburg, M., van den Elst, H., Tromp, M, van der Marel, G. A., and van Boom, J. H. (1986) Reaction of pivaloyl chloride with internucleosidic H-phosphonate diesters. Reel. Trav. Chim. Pays-Bas. 105, 505, 506.Google Scholar
  32. 32.
    Sakatsume, O., Yamane, H., Takaku, H., and Yamamoto, N. (1990) Use of new phosphonylating and coupling agents in the synthesis of oligodeoxyribonucleotides via the H-phosphonate approach. Nucl. Acids Res. 18, 3327–3331.CrossRefGoogle Scholar
  33. 33.
    Kume A., Fujii, M. Sekine, M., and Hata, T. (1984) Acylphosphonates. 4. Synthesis of dithymidine phosphonate: A new method for generation of phosphonate function via aroylphosphonate intermediates. J. Org. Chem. 49, 2139–2143.CrossRefGoogle Scholar
  34. 34.
    Wada, T., Hotoda, H., Sekine, M., and Hata, T. (1988) 2-Cyanoethyl nucleoside 3′-phosphonates as novel starting materials for oligonucleotide synthesis. Tetrahedron Lett. 29, 4143–4146.CrossRefGoogle Scholar
  35. 35.
    Watanabe T., Sato H., and Takaku, H. (1989) New phosphite method: the synthesis of oligodeoxyribonucleotides by use of deoxyribonucleoside 3′(Bis-(1,1,1,3,3,3-hexafluoro-2-propyl)phosphites) as new key intermediates. J. Am. Chem. Soc. 111, 3437–3439.CrossRefGoogle Scholar
  36. 36.
    Eritja, R., Smirnov, V., and Caruthers M. H. (1990) O-Aryl phosphoramidites: synthesis, reactivity and evaluation of their use for solid-phase synthesis of oligonucleotides. Tetrahedron 46, 721–730.CrossRefGoogle Scholar
  37. 37.
    Marugg, J. E., Burik, A., Tromp, M., van der Marel, G. A., and van Boom, J. H. (1986) A new and versatile approach to the preparation of valuable deoxynucleoside 3′-phosphite intermediates. Tetrahedron Lett. 27, 2271–2274.CrossRefGoogle Scholar
  38. 38.
    Garegg, P. J., Regberg, T., Stawinski, J., and Stromberg, R. (1987) Studies on the oxidation of nucleoside hydrogenphosphonates. Nucleosides & Nucleotides 6, 429–432.CrossRefGoogle Scholar
  39. 39.
    Sekine, M, Mori, H., and Hata, T. (1979) New type of chemical oxidative phosphorylation: activation of phosphonate function by use of triisopropylbenzenesulfonyl chloride. Tetrahedron Lett. 13, 1145–1148.CrossRefGoogle Scholar
  40. 40.
    Garegg, P. J., Regberg, T., Stawinski, J., and Stromberg, R. (1987) Nucleoside H-Phosphonates. V. The mechanism of hydrogenphosphonate diester formation using acyl chlorides as coupling agents in oligonucleotide synthesis by the hydrogenphosphonate approach. Nucleosides & Nucleotides 6, 655–662.CrossRefGoogle Scholar
  41. 41.
    Garegg, P. J., Stawinski, J., and Stromberg, R. (1987) Nucleosides H-phosphonates. 8. Activation of hydrogen phosphonate monoesters by chlorophosphates and arenesulfonyl derivatives. J. Org. Chem. 52, 284–287.CrossRefGoogle Scholar
  42. 42.
    Froehler, B. C., Ng, P. G., and Matteucci, M. D. (1986) Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucl. Acids Res. 14, 5399–5407.CrossRefGoogle Scholar
  43. 43.
    Garegg, P. J., Lindh, I., and Stawinski, J. (1987) Synthesis of trinucleoside monophosphates using nucleoside H-phosphonates, in Biophosphates and Their Analogs—Synthesis, Structure, Metabolism and Activity (Bruzik, K. S., and Stec, W. J., eds.), Elsevier Science, Amsterdam, pp. 89–92.Google Scholar
  44. 44.
    Regberg, T., Stawinski, J., and Stromberg, R. (1988) Nucleoside H-Phos-phonates. IX. Possible side reactions during hydrogen phosphonate diester formation. Nucleosides & Nucleotides 7, 23–35.CrossRefGoogle Scholar
  45. 45.
    Dubey, I. Ya., Lyapina, T. V., and Fedoryak, D. M. (1991) H-phosphonate oligonucleotide synthesis in solution. Nucl. Acids Symp. Ser. 24, 270.Google Scholar
  46. 46.
    Hara, S., Okugawa, T., Ohkuma, T., Eguchi, M., and Oka, K. (1982) Programmed flow preparation of DNA-oligomers. Nucl. Acids Symp. Ser. 11, 85–86.Google Scholar
  47. 47.
    Catlin, J. C. and Cramer, F. (1973) Deoxyoligonucleotide synthesis via the triester method. J. Org. Chem. 38, 245–250.CrossRefGoogle Scholar
  48. 48.
    Chattopadhyaya, J. B. and Reese, C. B. (1980) Chemical synthesis of a tridecanucleoside dodecaphosphate sequence of SV40 DNA. Nucl. Acids Res. 8, 2039–2053 and literature cited there.CrossRefGoogle Scholar
  49. 49.
    Fritz, H. J., Belagaje, R., Brown, E. L., Fritz, R. H., Jones, R. A., Lees, R. G., and Khorana, H. G. (1978) Studies on polynucleotides. 146. High-pressure liquid chromatography in polynucleotide synthesis. Biochemistry 17, 1257–1267.CrossRefGoogle Scholar
  50. 50.
    Schott, H., Semmler, R., and Closs, K. (1987) Preparative synthesis of guanylate-rich oligonucleotides using the phosphotriester method in solution. Nucleosides & Nucleotides 6, 407, 408.CrossRefGoogle Scholar
  51. 51.
    Ohtsuka, E., Shin, M, Tozuka, Z., Ohta, A., Kitano, K., Taniyama, Y., and Ikehara, M. (1982) Synthesis of deoxypolynucleotides interacting with proteins: large scale synthesis of λ OR3 17 mer and CAP site 22 mer duplexes by 3′-phosphoro-p-anisidate method. Nucl. Acids Symp. Ser. 11, 193–196.Google Scholar
  52. 52.
    Denny, W. A., Leupin, W., and Kearns, D. R. (1982) Simplified liquid-phase preparation of four decadeoxyribonucleotides and their preliminary spectroscopic characterization. Helv. Chim. Acta 65, 2372–2393.CrossRefGoogle Scholar
  53. 53.
    Mazzei, M., Balbi, A., Sottofattori, E., Abramova, T., Alama, A., and Nicolin, A. (1991) Liquid-phase synthesis and evaluation of antisense oligo-deoxynucleotides to DNA polymerase. Nucl. Acids Symp. Ser. 24, 298.Google Scholar
  54. 54.
    Nakahara, Y., and Ogawa, T. (1983) Chemical synthesis of nucleotide oli-gomers: convergent synthesis of fully protected 80mer of thymidylic acid. Nucl. Acids Symp. Ser. 12, 59–62.Google Scholar
  55. 55.
    Rosenthal, A. and Cech, D. (1983) Chemische Synthese des Penta-decadesoxyribonucleotides d(TTCTTCTA CACACCC) nach der verbes-serten Triestermethode. J. Prakt. Chem. 325, 764–773.CrossRefGoogle Scholar
  56. 56a.
    Kumar, G. and Poonian, M. S. (1984) Improvements in oligodeoxyribonucleotide synthesis: Methyl-N,N-dialkylphosphoramidite dimer units for solid-support phosphite methodology. J. Org. Chem. 49, 4905–4912.CrossRefGoogle Scholar
  57. 56b.
    Bannwarth, W. (1985) 200. Synthesis of oligodeoxy-nucleotides by the phosphite-triester method using dimer units and different phosphorus-protecting groups. Helv. Chim. Acta 68, 1907–1913.CrossRefGoogle Scholar
  58. 56c.
    Tanaka, T., and Oishi, T. (1985) Chemical synthesis of deoxyribonucleotides containing deoxyadenosine at the 3′-end on a polystyrene polymer support. Chem. Pharm. Bull. 33, 5178–5183.Google Scholar
  59. 56d.
    Wolter, A., Biernat, J., and Köster, H. (1986) Polymer support oligonucleotide synthesis XX: Synthesis of a henhectacosa deoxynucleotide by use of a dimeric phosphoramidite synthon. Nucleosides & Nucleotides 5, 65–77.CrossRefGoogle Scholar
  60. 56e.
    Miura, K., Sawadaishi, K, Inoue, H., and Ohtsuka, E. (1987) Blockwise mechanical synthesis of oligonucleotides by the phosphoramidite method. Chem. Pharm. Bull. 35, 833–836.Google Scholar
  61. 57.
    Seliger, H. Bach, T. C., Goertz, H. H., Happ, E., Holupirek, M., Seemann-Preising, B. Schiebel, H. M., and Schulten, H. R. (1982) Synthesis with nucleic acid constituents. Part XI. High-performance liquid chromatography in combination with field desorption mass spectrometry: separation and identification of building blocks for polynucleotide synthesis. J. Chromatog. 253, 65–79.CrossRefGoogle Scholar
  62. 58.
    Chattopadhyaya, J. B. and Reese, C. B. (1979) Some observations relating to phosphorylation methods in oligonucleotide synthesis. Tetrahedron Lett. 20, 5059–5062.CrossRefGoogle Scholar
  63. 59.
    Hayakawa Y., Uchiyama M., and Noyori, R. (1984) A convenient method for the formation of internucleotide linkage. Tetrahedron Lett. 25, 4003–4006.CrossRefGoogle Scholar
  64. 60.
    Fourrey, J.-L. and Varenne, J. (1985) Preparation and phosphorylation reactivity of N-nonacylated nucleoside phosphoramidites. Tetrahedron Lett. 26, 2663–2666.CrossRefGoogle Scholar
  65. 61.
    Gryaznov, S. M. and Letsinger, R. L. (1991) Synthesis of oligonucleotides via monomers with unprotected bases. J. Am. Chem. Soc. 113, 5876–5877.CrossRefGoogle Scholar
  66. 62.
    Rao, M. V. and Reese, C. B. (1989) Synthesis of cyclic oligodeoxyribonucleotides via the ‘filtration’ approach. Nucl. Acids Res. 17, 8221–8239.CrossRefGoogle Scholar
  67. 63.
    Gough, G. R., Brunden, M. J., Nadeau, J. G., and Gilham, P. T. (1982) Rapid preparation of hexanucleotide triester blocks for use in polydeoxyribonucleotide synthesis. Tetrahedron Lett. 23, 3439–3442.CrossRefGoogle Scholar
  68. 64.
    Jones, R. A., Fritz, H. J., and Khorana, H. G. (1978) Studies on poly-nucleotides. 147. Use of the lipophilic tert-butyldiphenylsilyl protecting group in synthesis and rapid separation of polynucleotides. Biochemistry 17, 1268–1278; Mishra, R. K. and Misra, K. (1988) Protecting groups as purification tool in large-scale synthesis of small oligodeoxynucleotides. Indian J. Chem. Sect. B, 27B, 817–820.CrossRefGoogle Scholar
  69. 65.
    Schott, H. and Ruess, H. (1986) Synthesis of fragments of the terminal inverted repeating units of macronuclear DNA from hypotrichous ciliates. Makromol. Chem. 187, 81–104.CrossRefGoogle Scholar
  70. 66.
    Gough, G. R., Brunden, M. J., and Gilham, P. T. (1981) Recovery and recycling of synthetic units in the construction of oligodeoxyribonucleotides on solid supports. Tetrahedron Lett. 32, 4177–4180.CrossRefGoogle Scholar
  71. 67.
    Seliger, H. and Rösch, R. (1990) Simultaneous synthesis of multiple oligonucleotides using nucleoside-H-phosphonate intermediates. DNA and Cell Biology 9, 691–696.CrossRefGoogle Scholar
  72. 68.
    Oka, K., Dobashi, Y., Ohkuma, T., and Hara, S. (1981) Liquid column switching extraction and chromatography for programmed flow preparation. J. Chromatography 217, 387–398.CrossRefGoogle Scholar
  73. 69.
    Brandstetter, F., Schott, H., and Bayer, E. (1975) Polymeric phosphate groups as protective groups for the liquid phase synthesis of oligonucleotides. Makromol. Chem. 176, 2163–2175.CrossRefGoogle Scholar
  74. 70.
    Bonora, G. M., Scremin, C. L., Colonna, F. P., and Garbesi, A. (1990) HELP (High Efficiency Liquid Phase) new oligonucleotide synthesis on soluble polymeric support. Nucl. Acids Res. 18, 3155–3159.CrossRefGoogle Scholar
  75. 71.
    Bonora, G. M., Biancotto, G., and Scremin, C. L. (1991) Use of the amidite chemistry in the PEG-supported, large-scale synthesis of oligonucleotides. The ‘HELP Plus’ method. Nucl. Acids Symp. Ser. 24, 222.Google Scholar
  76. 72.
    Kamaike, K., Hasegawa, Y., Masuda, I., Ishido, Y., Watanabe, K., Hirao, I., and Miura, K. I. (1990) Oligonucleotide synthesis in terms of a novel type of polymer support: a cellulose acetate functionalized with 4-(2-Hydroxyethylsulfonyl)dihydrocinnamoyl substituent. Tetrahedron 46, 163–184.CrossRefGoogle Scholar
  77. 73.
    Kamaike, K., Ogawa, T., Inoue, Y., and Ishido, Y. (1991) Further improvement in protecting method for the oligonucleotide synthesis in terms of a cellulose acetate derivative as a polymer support. Nucl. Acids Symp. Ser. 24, 37–39.Google Scholar
  78. 74.
    Hsiung, H. M. (1983) Isolating oligonucleotide product from a coupling reaction mixture. US-Pat. Appl. US 4417046, 5pp.Google Scholar
  79. 75.
    Biernat, J., Wolter, A., and Koster, H. (1983) Purification oriented synthesis of oligodeoxynucleotides in solution. Tetrahedron Lett. 24, 751–754.CrossRefGoogle Scholar
  80. 76.
    Seliger, H., Holupirek, M., and Gortz, H.-H. (1978) Solid-phase oligonucleotide synthesis with affinity chromatographic separation of the product. Tetrahedron Lett. 24, 2115–2118.CrossRefGoogle Scholar
  81. 77.
    Seliger, H., Holupirek, M., and Bach, T. C. (1977) The lipoyl affinity group and its use in oligonucleotide synthesis. British Chemical Society Nucleotide Group, 10th anniversary meeting, communications (poster no. 6)Google Scholar
  82. 78.
    Feist, P. L. and Danna, K. J. (1981) Sulfhydrylcellulose: a new medium for chromatography of mercurated polynucleotides. Biochemistry 20, 4243–4246.CrossRefGoogle Scholar
  83. 79.
    Gortz, H.-H. and Seliger, H. (1981) New hydrophobic protecting groups for the chemical synthesis of oligonucleotides. Angew. Chem, Int. Ed. Engl. 20, 681–683.CrossRefGoogle Scholar
  84. 80.
    Lewis, W., Stout, J., van Heeke, G., Wylie, D. E., Schuster, S. M., Wagner, F. W., and Coolidge, T. R. (1990) Peptide and oligonucleotide purification using immunoaffinity techniques. PCT Int. Appl., WO 9006936 Al, 68 pp.Google Scholar
  85. 81.
    Seliger, H. and Gupta, K. C. (1985) Three-phase synthesis of oligonucleotides. Angew. Chem. Int. Ed. Engl. 24, 685–687.CrossRefGoogle Scholar
  86. 82.
    Rubinstein, M. and Patchornik, A. (1975) Poly(3,5-diethylstyrene. sulfonyl chloride: A new reagent for internucleotide bond synthesis. Tetrahedron 31, 1517–1519; Rubinstein, M. and Patchornik, A. (1975) A novel method for phosphodiester and internucleotide bond synthesis. Tetrahedron 31, 2107–2110.CrossRefGoogle Scholar
  87. 83.
    Cohen, J. S. (ed.) (1989) Deoxyoligonucleotides, Antisense Inhibitors of Gene Expression. Macmillan, London.Google Scholar
  88. 84.
    Goodchild, J. (1990) Conjugates of oligonucleotides and modified oligonucleotides: A review of their synthesis and properties. Bioconjugate Chem. 1, 165–187.CrossRefGoogle Scholar
  89. 85.
    Uhlmann, E. and Peyman, A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem. Rev. 90, 543–584.CrossRefGoogle Scholar
  90. 86.
    Englisch, U. and Gauss, D. H. (1991) Chemically modified oligonucleotides as probes and inhibitors. Angew. Chem. Int. Ed. Engl. 30, 613–629.CrossRefGoogle Scholar
  91. 87.
    Charubala, R., Uhlmann, E., and Pfleiderer, W. (1981) Synthese und Eigen-schaften von Adenylyl-adenylyl-adenosinen. Liebigs Ann. Chem. 2392–2406.Google Scholar
  92. 88.
    Martin, E. M., Birdsall, N. J. M., Brown, R. E., and Kerr, I. M. (1979) Enzymic synthesis, characterisation and nuclearmagnetic-resonance spectra of pppA2′p5′A2′p5′A with chemically synthesised material. Eur. J. Biochem. 95, 295–307.CrossRefGoogle Scholar
  93. 89.
    Sawai, H., Shibata, T., and Ohno, M. (1979) Synthesis of oligonucleotide inhibitor of protein synthesis: pppA2′p5′A2′p5′A. Tetrahedron Lett. 47, 4573–4576.CrossRefGoogle Scholar
  94. 90.
    Ogilvie, K. K. and Theriault, N. Y. (1979) The synthesis of 2′,5′ linked oligoribonucleotides. Tetrahedron Lett. 20, 2111–2114.CrossRefGoogle Scholar
  95. 91.
    Karpeisky, M. Y., Beigelman, L. N., Mikhailov, S. N., Padyukova, N. S., and Smrt, J. (1982) Synthesis of adenylyl-(2′–5′)adenylyl-(2′–5′)adenosine. Coll. Czech. Chem. Commun. 47, 156–166.CrossRefGoogle Scholar
  96. 92.
    Noyori, R., Uchiyama, M, Kato, H. Wakabayashi, S., and Hayakawa, Y. (1990) Organometallic methodologies for nucleic acid synthesis. Pure Appl. Chem. 62, 613–622.CrossRefGoogle Scholar
  97. 93.
    Markiewicz, W. T. (1979) Tetraisopropyldisiloxane-l,3-diyl, a group for simultaneous protection of 3′-and 5′-hydroxy functions of nucleosides. J. Chem. Res. (S), 24, 25.Google Scholar
  98. 94.
    Gioeli, C., Kwiatkowski, M., Oeberg, B., and Chattopadhyaya, J. B. (1981) The tetraisopropyldisiloxanel,3-diyl: a versatile protecting group for the synthesis of adenylyl-(2′–5′)-adenylyl-(2′–5′)adenosine (2–5A core) Tetrahedron Lett. 22, 1741–1744.CrossRefGoogle Scholar
  99. 95.
    Kvasyuk, E. I., Kalinichenko, E. N., Kulak, T. I., Podkopaeva, T.L., Mikhailopulo, I. A., Popov, I. L., Barai, V. N., and Zinchenko, A. I. (1985) Chemical and microbiological 5′-phosphorylation of (2′–5′)oligoadenylates. Sov. J. Bioorg. Chem. 11, 670–677.Google Scholar
  100. 96.
    Kvasyuk, E. I., Kulak, T. I., Zaitseva, G. V., Mikhailopulo, I. A., and Pfleiderer, W. (1984) Synthesis of 2′,3′-cyclic acetal derivatives of (2′–5′)oligoadenylates and affinity sorbents based on them. Bioorg. Khim. 10, 506–514.Google Scholar
  101. 97.
    Charubala, R., Pfleiderer, W., Sobol, R. W., Wu Li, S., and Suhadolnik, R. J. (1989) Chemical synthesis of adenylyl-(2′–5′)-adenylyl-(2′–5′)-8-azidoadenosine, and activation and photoaffinity labelling of RNase L by I32PIp5′A2′p5′A2′p5′N3 8A. Helv. Chim. Ada 72, 1354–1361.CrossRefGoogle Scholar
  102. 98.
    Mueller, W. E. G., Weiler, B. E., Charubala, R., Pfleiderer, W., Leserman, L., Sobol, R. W., Suhadolnik, R. J., and Schroeder, H. C. (1991) Cordycepin analogues of 2′,5′-oligoadenylate inhibit human immunodefiency virus infection via inhibition of reverse transcriptase. Biochemistry 30, 2027–2033.CrossRefGoogle Scholar
  103. 99.
    Herdewijn, P., Ruf, K., and Pfleiderer, W. (1991) Nucleotides. Part XXXIV. Synthesis of modified oligomeric 2′–5′A analogues: potential antiviral agents. Helv. Chim. Acta 74, 7–23.CrossRefGoogle Scholar
  104. 100.
    Mikhailov, S. N., Charubala, R., and Pfleiderer, W. (1991) Nucleotides. Part XXXV. Synthesis of 3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenylyl-(2′-.omega.)-9-(.omega.hydroxyalkyl)adenines. Helv. Chim. Acta 74, 887–891.CrossRefGoogle Scholar
  105. 101.
    Herdewijn, P., Charubala, R., De Clercq, E., and Pfleiderer, W. (1989) 191. Nucleotides, Part. XXXII. Synthesis of 2′–5′ connected oligonucleotides. Prodrugs for antiviral and antitumoral nucleosides. Helv. Chim. Acta 72, 1739–1748.CrossRefGoogle Scholar
  106. 102.
    de Vroom, E., Fidder, A., Saris, C. P., van der Marel, G. A., and van Boom, J. H. (1987) Preparation of the individual diastereomers of adenylyl-(2′–5′)-P-thioadenylyl-(2′–5′)adenosine and their 5′-phosphorylated derivatives. Nucl. Acids Res. 15, 9933–9943.CrossRefGoogle Scholar
  107. 103.
    Charachon, G., Sobol, R. W., Bisbal, C., Salehzada, T., Silhol, M., Charubala, R., Pfleiderer, W., Lebleu, B., and Suhadolnik, R. J. (1990) Phosphorothioate analogs of (2′–5′)(A)4: agonist and antagonist activities in intact cells. Biochemistry 29, 2550–2556.CrossRefGoogle Scholar
  108. 104.
    Charubala, R., Sobol, R. W., Kon, N., Suhadolnik, R. J., and Pfleiderer, W. (1991) Syntheses and biological characterization of phosphorothioate analogues of (3′–5′)adenylate trimer. Helv. Chim. Ada 74, 892–898.CrossRefGoogle Scholar
  109. 105.
    Battistini, C., Brasca, M. G., and Fustinoni, S. (1991) High stereoselectivity in the formation of the interribonucleotidic phosphorothioate bond. Nucleosides & Nucleotides 10, 723–725.CrossRefGoogle Scholar
  110. 106.
    Kariko, K., Sobol, R. W., Suhadolnik, L., Li, S. W., Reichenbach, N. L., Suhadolnik, R. J., Charubala, R., and Pfleiderer, W. (1987) Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatically synthesized 2′,5′-phosphorothioate dimer and trimer: Unequivocal structural assignment and activation of 2′,5′-oligoadenylate-dependent endoribonuclease. Biochemistry 26, 7127–7135.CrossRefGoogle Scholar
  111. 107.
    Kariko, K., Li, S. W., Sobol, R. W., Suhadolnik, R. J., Charubala, R., and Pfleiderer, W. (1987) Phosphorothioate analogues of 2′,5′-oligoadenylate. Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by 2′,5′-phosphorothioate cores and 5′-monophosphates. Biochemistry 26, 7136–7142.CrossRefGoogle Scholar
  112. 108.
    Charubala, R., Bannwarth, W., and Pfleiderer, W. (1980) Nucleotide, XII. Synthese und Eigenschaften von Trinucleosiddiphosphaten mit Thymidin, 2′-Desoxyadenosin und l-(2′Desoxy-alpha-sowie l-(2′-Desoxy-β-D-ribofuranosyl)-lumazinen als Bausteine. Liebigs Ann. Chem.65–79.Google Scholar
  113. 109.
    Flockerzi, D., Silber, G., and Pfleiderer, W. (1983) Nucleotides. XXI. Synthesis and properties of dihydrouridine-containing oligonucleotides. Helv. Chim. Acta, 66, 2641–2651.CrossRefGoogle Scholar
  114. 110.
    Ohtsuka, E., Matsugi, J., Takashima, H., Aoki, S., Wakabayashi, T., Miyake, T., and Ikehara, M. (1983) Studies on transfer ribonucleic acids and related compounds. XLI. Synthesis of tRNA fragments containing modified nucleosides. Chem. Pharm. Bull. 31, 513–520.Google Scholar
  115. 111.
    Millican, T. A., Mock, G. A., Chauncey, M. A., Patel, T. P., Eaton, M. A. W., Gunning, J., Cutbush, S. D., Neidle, S., and Mann, J. (1984) Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: a possible approach to the problem of mixed base oligodeoxy-nucleotide synthesis. Nucl. Acids Res. 12, 7435–7453.CrossRefGoogle Scholar
  116. 112.
    Altermatt, R. and Tamm, C. (1985) Synthese eines Tridecanucleosid-dodecaphosphats, das die unnatürliche Base 2 (1H)-Pyrimidinon enthält. Helv. Chim. Acta 68, 475–483.CrossRefGoogle Scholar
  117. 113.
    Uesugi, S., Miyashiro, H., Tomita, K., and Ikehara, M. (1986) Synthesis and properties of d(ATACGCGTAT) and its derivatives containing one and two 5-methylcytosine residues. Effect of the methylation on deoxyribonucleic acid conformation. Chem. Pharm. Bull. 34, 51–60.Google Scholar
  118. 114.
    Kawase, Y., Iwai, S., and Ohtsuka, E. (1989) Synthesis and thermal stability of dodecadeoxyribonucleotides containing deoxyinosine pairing with four major bases. Chem. Pharm. Bull. 37, 599–601.Google Scholar
  119. 115.
    Li, B. F. L., Reese, C. B., and Swann, P. F. (1987) Synthesis and characterization of oligodeoxynucleotides containing 4-O-methylthymine. Biochemistry 26, 1086–1093.CrossRefGoogle Scholar
  120. 116.
    Butkus, V., Klimasauskas, S., Petrauskiene, L., Maneliene, Z., Janulaitis, A., Minchenkova, L. E., and Shelkina, A. K. (1987) Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine. Nucl. Acids Res. 15, 8467–8478.CrossRefGoogle Scholar
  121. 117.
    Goddard, A. J. and Marquez, V. E. (1988) Synthesis of a phosphoramidite of 2′-deoxy-5,6-dihydro-5-azacytidine. Its potential application in the synthesis of DNA containing dihydro-5-aza-and 5-azacytosine bases. Tetrahedron Lett. 15, 1767–1770.CrossRefGoogle Scholar
  122. 118.
    Smith, C. A. (1991) Chemical synthesis of oligonucleotides containing a naphthalene diolepoxide deoxycytidine adduct in solution and using a mixed chemistry semiautomated solid phase approach. Carcinogenesis 12, 631–636.CrossRefGoogle Scholar
  123. 119.
    Vasseur, J.-J., Rayner, B., and Imbach, J.-L. (1986) Preparation of a short synthetic apurinic oligonucleotide. Biochem. Biophys. Res. Commun. 134, 1204–1208.CrossRefGoogle Scholar
  124. 120.
    Ikehara, M., Takatsuka, Y., and Uesugi, S. (1979) Polynucleotides. LIII. Synthesis and properties of 2′-azido-2′-deoxyadenylyl-(3′–5′)-2′-azido-2′deoxyadenosine. Chem. Pharm. Bull. 27, 1830–1835.Google Scholar
  125. 121.
    Uesugi, S., Takatsuka, Y., Ikehara, M., Cheng, D. M., Kan, L. S., and Ts’o, P. O. P. (1981) Synthesis and characterization of the dinucleoside monophosphates containing 2′fluoro-2′-deoxyadenosine. Biochemistry 20, 3056–3062.CrossRefGoogle Scholar
  126. 122.
    Damha, M. J., Usman, N., and Ogilvie, K. K. (1987) The rapid chemical synthesis of arabinonucleotides. Tetrahedron Lett. 28, 1633–1636.CrossRefGoogle Scholar
  127. 123.
    Ikehara, M., Uesugi, S., and Shida, T. (1980) Polynucleotides. LV. Synthesis and properties of dinucleoside monophosphates derived from adenine 8,2′-S-and uracil 6,2′-O-cyclonucleosides. Further support for the left-handed stacking of oligonucleotides giving high-anti base torsion angles. Chem. Pharm. Bull. 28, 189–197.Google Scholar
  128. 124.
    Uesugi, S., Shida, T., and Ikehara, M. (1980) Polynucleotides. LXI. Synthesis and properties of dinucleoside monophosphates containing 8, 2′-S-cycloadenosine and 8,2′-S-cycloinosine residues. Sequence dependency of the stability of the stacking conformation. Chem. Pharm. Bull. 28, 3621–3631.Google Scholar
  129. 125.
    Morvan, F., Rayner, B., Imbach, J.-L., Thenet, S., Bertrand, J.-R., Paoletti, J., Malvy, C., and Paoletti, C. (1987) α-DNA II. Synthesis of unnatural α-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases. Nucl. Acids Res. 15, 3421–3437.CrossRefGoogle Scholar
  130. 126.
    Nagyvary, J. (1966) Studies on the specific synthesis of the natural inter-nucleotide linkage by the use of cyclonucleosides. I. The utilization of unprotected nucleotides. Biochemistry 5, 1316–1322.CrossRefGoogle Scholar
  131. 127.
    Norman, E. J. and Nagyvary, J. (1974) Synthesis of some trinucleoside monophsophates of biological interest. J. Med. Chem. 17, 473–475.CrossRefGoogle Scholar
  132. 128.
    Sekine, M. and Hata, T. (1985) Synthesis of branched ribonucleotides related to the mechanism of splicing of eukaryotic messenger RNA. J. Am. Chem. Soc. 107, 5813–5815.CrossRefGoogle Scholar
  133. 129.
    Damha, M. J., Pon, R. T., and Ogilvie,K. K. (1985) Chemical synthesis of branched RNA: novel trinucleoside diphosphates containing vicinal 2′–5′ and 3′–5′ phosphodiester linkages. Tetrahedron Lett. 26, 4839–4842.CrossRefGoogle Scholar
  134. 130.
    Kierzek, R., Kopp, D. W., Edmonds, M, and Caruthers, M. H. (1986) Chemical synthesis of branched RNA. Nucl. Acids Res. 14, 4751–4764.CrossRefGoogle Scholar
  135. 131.
    Remaud, G., Balgobin, N., Sandstrom, A., Vial, J.-M, Koole, L. H., Buck, H. M., Drake, A. F., Zhou, X.-X., and Chattopadhyaya, J. (1989) Why do all lariat RNA introns have adenosine as the branch point nucleotide? Conformational study of naturally-occurring branched trinucleotides and its eleven analogues by 1H-, 31P-NMR and CD spectroscopy. J. Biochem. Biophys. Meth. 18, 1–36.CrossRefGoogle Scholar
  136. 132.
    Zhou, X.-X., Nyilas, A., Remaud, G., and Chattopadhyaya, J. B. (1987) Regiospecific synthesis of branched tetranucleotides: U3′p5′A2 P5 G3′p5′U, U3′p5′A2 P5 G3′p5′C, A3′p5′A2 P5 G3′p5′U &a3′p5′A2 P5 G3′p5′C. Tetrahedron 43, 4685–4698.CrossRefGoogle Scholar
  137. 133.
    Sekine, M, Heikkila, J., and Hata, T. (1987) A new method for the synthesis of branched oligoribonucleotides using a fully protected branched triribonucleoside diphosphate unit. Tetrahedron Lett. 28, 5691–5694.CrossRefGoogle Scholar
  138. 134.
    Hayakawa, Y., Nobori, T., Noyori, R., and Imai, J. (1987) Synthesis of 2′–5′,3′–5′ linked triadenylates. Tetrahedron Lett. 28, 2623–2626.CrossRefGoogle Scholar
  139. 135.
    Fourrey, J. L., Varenne, J., Fontaine, C., Guittet, E., and Yang, Z. W. (1987) A new method for the synthesis of branched ribonucleotides. Tetrahedron Lett. 28, 1769–1772.CrossRefGoogle Scholar
  140. 136.
    Huss, S., Gosselin, G., and Imbach, J.-L. (1987) Synthese chimique de nucleotide possedant des liaisons phosphodiesters 2′–5′ et 3′–5′ vicinales. Tetrahedron Lett. 28, 415–418.CrossRefGoogle Scholar
  141. 137a.
    Zhou, X. X., Remaud, G., and Chattopadhyaya, J. (1988) New regiospecific synthesis of the branched tri-, penta-, and heptaribonucleic acids which are formed as the lariat in the pre-mRNA processing reactions (splicing) Tetrahedron 44, 6471–6489.CrossRefGoogle Scholar
  142. 137b.
    Sund, C., Agback, P., and Chattophadyaya, J. B. (1991) Synthesis of tetra-meric cyclic branched-RNA (lariat) modelling the introns of group II and nuclear pre-mRNA processing reaction (splicing) Tetrahedron 47, 9659–9674.CrossRefGoogle Scholar
  143. 138.
    Lee, M., Huss, S. Gosselin, G. Imbach, J.-L., Hartley, J. A., and Lown, J. W. (1987) Strucure and conformation of the branch core triribonucleotide containing 2′–5′ and 3′–5′ phosphodiester linkages (A2 P5 G3′p5′C) in solution, essential for yeast mRNA splicing, deduced from 1H-NMR. J. Biomolec. Struct. & Dynam. 5, 651–668.Google Scholar
  144. 139.
    Huss, S., Gosselin, G., and Imbach, J.-L. (1988) Synthesis of various branched triribonucleoside diphosphates by site-specific modification of a diphenylcarbamoyl-protected guanine residue. J. Org. Chem. 53, 499–506.CrossRefGoogle Scholar
  145. 140.
    Damha, M. J. and Ogilvie, K. K. (1988) Conformational properties of branched RNA fragments in aqueous solution. Biochemistry 27, 6403–6416.CrossRefGoogle Scholar
  146. 141.
    Zhou, X.-X., Nyilas, A., Remaud, G., and Chattopadyaya, J. (1988) 270 MHz 1H-NMR study of four branched tetraribonucleotides:A3′p5′A2 P5 G3′p5′U, A3′p5′A2 P5 G3′p5′C, U3′p5′A2 P5 G3′p5′U and U3′p5′A2 P5 Gp5′C which are formed as the lariat branch-point in the pre-mRNA processing reactions (splicing) Tetrahedron 44, 571–589.CrossRefGoogle Scholar
  147. 142.
    Eckstein, F., (1983) Phosphorothioate analogs of nucleotides—tools for the investigation of biochemical processes. Angew. Chem. Int. Ed. Engl. 22, 423–439.CrossRefGoogle Scholar
  148. 143.
    Marugg, J. E., van den Bergh, C., Tromp, M., van der Marel, G. A., van Zoest, W. J., and van Boom, J. H. (1984) Synthesis of phosphorothioate-containing DNA fragments by a modified hydroxybenzotriazole phospho-triester approach. Nucl. Acids Res. 12, 9095–9110.CrossRefGoogle Scholar
  149. 144.
    Fujii, M., Ozaki, K., Kume, A., Sekine, M., and Hata, T. (1986) Acylphos-phonates. 5. A new method for stereospecific generation of phosphorothioate via aroylphosphonate intermediate. Tetrahedron Lett. 27, 935–938.CrossRefGoogle Scholar
  150. 145.
    Dabkowski, W., Michalski. J., and Wang, Q. (1991) Silyloxyphosphanes. New phosphitylating reagents in nucleotide chemistry. Nucleosides & Nucleotides 10, 601–602.CrossRefGoogle Scholar
  151. 146.
    Bogachev, V. S., Kumarev, V. P., and Rybalkov, V. N. (1986) Phosphorothioate analogues of nucleic acids. V. synthesis of 5′-phosphorothioate analogues of oligodeoxyribonucleotides with the aid of zwitterionic monomers. Sov. J. Bioorg. Chem. 12, 64–70.Google Scholar
  152. 147.
    Stec, W. J., Grajkowski, A., Koziolkiewicz, M., and Uznanski, B. (1991) Novel route to oligo(deoxyribonucleoside phosphorothioates) Stereo-controlled synthesis of Pchiral oligo(deoxyribonucleoside phosphorothioates) Nucl. Acids Res. 19, 5883–5888.CrossRefGoogle Scholar
  153. 148.
    Cosstick, R. and Williams, D. M. (1987) An approach to the stereoselective synthesis of Sp-dinucleoside phosphorothioates using phosphotriester chemistry. Nucl. Acids Res. 15, 9921–9932.CrossRefGoogle Scholar
  154. 149.
    Stawinski, J., Thelin, M., and von Stedingk, E. (1991) Studies on sulfur-ization of nucleoside H-phosphonate and H-phosphonothioate esters using 3H-l,2-benzodithiol-3-one 1,1-dioxide. Nucleosides & Nucleotides 10, 517,518.CrossRefGoogle Scholar
  155. 150.
    Nielsen, J., Brill, W. K.-D., and Caruthers, M. H. (1988) Synthesis and characterization of dinucleoside phosphorodithioates. Tetrahedron Lett. 29, 2911–2914.CrossRefGoogle Scholar
  156. 151.
    Grandas, A., Marshall, W. S., Nielsen, J., and Caruthers, M. H. (1989) Synthesis of deoxycytidine oligomers containing phosphorodithioate linkages. Tetrahedron Lett. 30, 543–546.CrossRefGoogle Scholar
  157. 152.
    Dahl, B. H., Bjergarde, K., Sommer, V. B., and Dahl, O. (1989) Synthetic approaches to oligodeoxyribonucleoside phosphorodithioates using tervalent phosphorus monomers. Nucleosides & Nucleotides 8, 1023–1027.CrossRefGoogle Scholar
  158. 153.
    Porritt, G. M. and Reese, C. B. (1990) Use of the 2,4-dinitrobenzyl protecting group in the synthesis of phosphorodithioate analogues of oligodeoxyribo-nucleotides. Tetrahedron Lett. 31, 1319–1322.CrossRefGoogle Scholar
  159. 154.
    Farschtschi, N. and Gorenstein, D. G. (1988) Preparation of a deoxy-nucleoside thiophosphoramidite intermediate in the synthesis of nucleoside phosphorodithioates. Tetrahedron Lett. 29, 6843–6846.CrossRefGoogle Scholar
  160. 155.
    Dahl, B. H., Bjergarde, K., Sommer, V. B., and Dahl, O. (1989) Deoxyribo-nucleoside phosphorodithioates: Preparation of dinucleoside phosphorodithioates from nucleoside thiophosphoramidites. Ada Chem. Scand. 43, 896–901.CrossRefGoogle Scholar
  161. 156.
    Brill, W. K.-D., Tang, J.-Y., and Caruthers, M. H. (1989) Synthesis of oligodeoxynucleoside phosphorodithioates via thioamidites. J. Am. Chem. Soc. 111, 2321, 2322.CrossRefGoogle Scholar
  162. 157.
    Stawinski, J., Thelin, M., and Zain, R. (1989) Nucleoside H-phosphonates. X. Studies on nucleoside hydrogenphosphonothioate diester synthesis. Tetrahedron Lett. 30, 2157–2160.CrossRefGoogle Scholar
  163. 158.
    Porritt, G. M. and Reese, C. B. (1989) Nucleoside phosphonodithioates as intermediates in the preparation of dinucleoside phosphorodithioates and phosphorothioates. Tetrahedron Lett. 30, 4713–4716.CrossRefGoogle Scholar
  164. 159.
    Piotto, M.E., Granger, J.N., Cho, Y., Farschtschi, N., and Gorenstein, D. G. (1991) Synthesis, NMR and structure of oligonucleotide phosphorodithioates. Tetrahedron 47, 2449–2461.CrossRefGoogle Scholar
  165. 160a.
    Dahl, B. H., Bjergarde, K., Nielsen, J., and Dahl, O. (1990) Deoxynucleoside phosphorodithioates. Preparation by a triester method. Tetrahedron Lett. 31, 3489–3492.CrossRefGoogle Scholar
  166. 160b.
    Dahl, B. H., Bjergarde, K., Nielsen, J., and Dahl, O. (1991) Synthesis of oligodeoxynucleoside phosphorodithioates by a phosphotriester method. Nucleosides & Nucleotides 10, 553, 554.CrossRefGoogle Scholar
  167. 161.
    Dahl, B. H., Bjergarde, K., Henriksen, L., and Dahl, O. (1990) A highly reactive, odourless substitute for thiophenol/triethylamine as a deprotection reagent in the synthesis of oligonucleotides and their analogues. Acta Chem. Scand. 44, 639–641.CrossRefGoogle Scholar
  168. 162.
    Heinemann, U., Rudolph, L.-N., Alings, C., Morr, M., Heikens, W., Frank, R., and Blöcker, H. (1991) Effect of a single 3′-methylene phosphonate linkage on the conformation of an A-DNA octamer double helix. Nucl. Acids Res. 19, 427–432.CrossRefGoogle Scholar
  169. 163.
    Stawinski, J. and Szabo, T. (1991) Studies directed towards efficient synthesis of oligo-5′-deoxy-5-C (phosphonomethyl)deoxyribonucleosides. Nucl. Acids Symp. Ser. 24, 71, 72.Google Scholar
  170. 164.
    van der Woerd, R., Bakker, C. G., and Schwartz, A. W. (1987) Synthesis of Pl,P2-dinucleotide pyrophosphates. Tetrahedron Lett. 28, 2763–2766.CrossRefGoogle Scholar
  171. 165.
    Letsinger, R. L. and Mungall, W. S. (1970) Phosphoramidate analogs of oligonucleotides. J. Org. Chem. 35, 3800–3803.CrossRefGoogle Scholar
  172. 166.
    Krayevsky, A. A., Azhayev, A. V., Kukhanova, M. K., Scapcova, N. V., and Zayceva, V. E. (1981) Synthesis of oligonucleotides with 5′-3′ phospho-amidoester bond. Nucl. Acids Symp. Ser. 9, 203–205.Google Scholar
  173. 167.
    Roelen. H. C. P. F., de Vroom, E., van der Marel, G. A., and van Boom, J. H. (1988) Synthesis of nucleic acid methylphosphonothioates. Nucl. Acids Res. 16, 7633–7645.CrossRefGoogle Scholar
  174. 168.
    Stawinski, J., Stromberg, R., and Szabo, T. (1991) Convenient synthesis of dinucleotide methylphosphonates. Nucl. Acids Symp. Ser. 24, 229.Google Scholar
  175. 169.
    Miller, P. S., Annan, N. D., McParland, K. B., and Pulford, S. M. (1982) Oligothymidylate analogues having stereoregular, alternating methylphos-phonate/ phosphodiester backbones as primers for DNA polymerase. Biochemistry 21, 2507–2512.CrossRefGoogle Scholar
  176. 170.
    Durand, M., Maurizot, J. C., Asseline, U., Barbier, C., Thuong, N. T., and Helene, C. (1989) Oligothymidylates covalently linked to an acridine derivative and with modified phosphodiester backbone: circular dichroism studies of their interactions with complementary sequences. Nucl. Acids Res. 17, 1823–1837.CrossRefGoogle Scholar
  177. 171.
    Loeschner, T. and Engels, J. (1989) One pot Rp-diastereoselective synthesis of dinucleoside methylphosphonates using methyldichlorophosphine. Tetrahedron Lett. 30, 5587–5590; Loeschner, T. and Engels, J. W. (1990) Diastereomeric dinucleoside-methylphosphonates: determination of configuration with the 2-D NMR ROESY technique. Nucl. Acids Res. 18, 5083–5088.CrossRefGoogle Scholar
  178. 172.
    Engels, J. W., Loeschner, T., and Frauendorf, A. (1991) Diastereoselective synthesis of thymidinemethylphosphonate dimers. Nucleosides & Nucleotides 10, 347–350.CrossRefGoogle Scholar
  179. 173.
    Lesnikowski, Z. J., Jaworska-Maslanka, M. M., and Stec, W. J. (1991) Stereospecific synthesis of p-chiral di(2′-O-deoxyribonucleoside)methane-phosphonates. Nucleosides & Nucleotides 10, 733–736.CrossRefGoogle Scholar
  180. 174.
    Lesnikowski, Z. J., Jaworska, M., and Stec, W. J. (1990) Octa(thymidine methanephosphonates of partially defined stereochemistry: synthesis and effect of chirality at phosphorus on binding to pentadecadeoxyriboadenylic acid. Nucl. Acids Res. 18, 2109–2115CrossRefGoogle Scholar
  181. 175.
    Miller, P. S., Chandrasegaran, S., Dow, D. L., Pulford, S. M., and Kan, L. S. (1982) Synthesis and template properties of an ethyl phosphotriester modified decadeoxyribonucleotide. Biochemistry 21, 5468–5474.CrossRefGoogle Scholar
  182. 176.
    Abramova, T. V., Komarova, N. I., Lebedev, A. V., and Tagai, A. (1984) An investigation of the diastereomers of nonionic analogues of oligonucleotides. II. Assignment of the configurations at the phosphorus atoms in the diastereomers of ethyl esters of oligothymidylates. Sov. J. Bioorg. Chem. 10, 742–746.Google Scholar
  183. 177.
    Asseline, U., Barbier, C., and Thuong, N. T. (1986) Oligothymidylates with alternating alkyl phosphotriester and phosphodiester structure covalently bonded to an intercalating agent. Phosphorus Sulfur 26, 63–73.CrossRefGoogle Scholar
  184. 178.
    Kuijpers, W. H. A., Huskens, J., Koole, L. H., and van Boeckel, C. A. A. (1990) Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucl. Acids Res. 18, 5197–5205.CrossRefGoogle Scholar
  185. 179.
    Quaedflieg, P. J. L. M., van der Heiden, A. P., Koole, L. H., Coenen, A. J. J. M., van der Wai, S., and Meijer, E. M. (1991) Synthesis and conformational analysis of phosphate-methylated RNA dinucleotides. J. Org. Chem. 56, 5846–5859.CrossRefGoogle Scholar
  186. 180.
    Michalski, J., Dabkowski, W., Lopusinski, A., and Cramer, F. (1991) Stereo-selective synthesis of nucleoside phosphorofluoridates. Nucleosides & Nucleotides 10, 283–286.Google Scholar
  187. 180a.
    Michalski, J. (1991) New synthetic approach to nucleoside phosphorofluoridates and fluoridites. Novel type of phosphitylating reagents containing 4-nitrophenoxy group. Nucl. Acids Symp. Ser. 24, 79–82.Google Scholar
  188. 181.
    Eschenmoser, A. (1991) Warum Pentose-und nicht HexoseNucleinsäuren Nachr. Chem. Tech. Lab. 39, 795–807.CrossRefGoogle Scholar
  189. 182.
    Naylor, R. and Gilham, P. T. (1966) Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry 5, 2722–2728.CrossRefGoogle Scholar
  190. 183.
    Chen, C. B., Inoue, T., and Orgel, L. E. (1985) Template-directed synthesis on oligodeoxycytidylate and polydeoxycytidylate templates. J. Mol. Biol. 181, 271–279; Grzeskowiak, K. and Orgel, L. E. (1986) Template-directed synthesis on short oligoribocytidylates. J. Mol. Evol. 23, 287–289.CrossRefGoogle Scholar
  191. 184.
    Joyce, G. F. and Orgel, L. E. (1986) Non-enzymatic template-directed synthesis on RNA random copolymers. J. Mol. Biol. 188, 433–441.CrossRefGoogle Scholar
  192. 185.
    Zielinski, W. S. and Orgel. L. E. (1985) Oligomerization of activated derivatives of 3′-amino-3′-deoxyguanosine on poly(C) and poly(dC) templates. Nucl. Acids Res. 13, 2469–2484; Zielinski, W. S. and Orgel, L. E. (1987) Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3′-amino-3′-deoxynucleotides (GC and CG) in aqueous solution. Nucl. Acids Res. 15, 1699–1715.CrossRefGoogle Scholar
  193. 186.
    Visscher, J. and Schwartz, A. W. (1988) Template-directed synthesis of acyclic oligonucleotide analogues. J. Mol. Evol. 28, 3–6.CrossRefGoogle Scholar
  194. 187.
    Visscher, J. and Schwartz, A. W. (1990) Oligomerization of cytosine-containing nucleotide analogues in aqueous solution. J. Mol. Evol. 30, 3–6.CrossRefGoogle Scholar
  195. 188.
    Inoue, T., Joyce, G. F., Grzeskowiak, K., Orgel, L. E., Brown, J. M., and Reese, C. B. (1984) Template-directed synthesis on the pentanucleotide CpCpGpCpC. J. Mol. Biol. 178, 669–676.CrossRefGoogle Scholar
  196. 188a.
    Zielinski, W. S. and Orgel, L. E. (1987) Autocatalytic synthesis of a tetra-nucleotide analogue. Nature 327, 346–347.CrossRefGoogle Scholar
  197. 189.
    von Kiedrowski, G., Wlotzka, B., Helbing, J., Matzen, M., and Jordan, S. (1991) Parabolisches Wachstum eines selbstreplizierenden Hexadesoxy-nucleotids mit einer 3′–5′-Phosphoamidat-Bindung. Angew. Chem. 103, 456–459.CrossRefGoogle Scholar
  198. 190.
    Shimidzu, T., Murakami, A., and Konishi, Y. (1979) Template-directed synthesis of oligonucleotides. Part 4. Condensation of nucleotides in the presence of nucleic acid base binding (4-vinylpyridine-styrene)copolymer in homogeneous solution. J. Chem. Research (S), 232, 233, (M), 2751–2766.Google Scholar
  199. 191.
    Sawai, H. (1988) Oligonucleotide formation catalyzed by divalent metal ions. The uniqueness of the ribosyl system. J. Mol. Evol. 27, 181–186.CrossRefGoogle Scholar
  200. 192.
    Schwartz, A. W. and Orgel, L. E. (1985) Template-directed polynucleotide synthesis on mineral surfaces. J. Mol. Evol. 21, 299–300.CrossRefGoogle Scholar
  201. 193.
    Ferris, J. P., Kamaluddin, G. E., Agarwal, V., and Hua, L. L. (1989) Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: the possible role of montmorillonite clays. Advances in Space Res. 9, 67–75CrossRefGoogle Scholar
  202. 194.
    Egofarova, R. Kh., Vasil’eva, N. V., Otroshchenko, V. A., and Pavlovskaya, T. E. (1990) Simultaneous synthesis of peptides and oligonucleotides on kaolinite with aminoacyladenylates. Izv. Akad. Nauk SSSR, Ser. Biol. 1, 136–140.Google Scholar
  203. 195.
    Dolinnaya, N. G., Gryaznova, O. I., Sokolova, N. IK., and Shabarova, Z. A. (1986) Chemical reactions in double-helical nucleic acids. I. Chemical ligation as a method of introducing phosphoramide and pyrophosphate internucleotide bonds into DNA duplexes. Bioorg. Khim. 12, 755–763.Google Scholar
  204. 196.
    Kuznetsova, S. A., Ivanovskaya, M. G., and Shabarova, Z. A. (1990) Chemical reactions in double-stranded nucleic acids. IX. Directed introduction of substituted pyrophosphate bonds into DNA structure. Bioorg. Khim. 16, 219–225.Google Scholar
  205. 197.
    Isagulyants, M. G., Ivanovskaya, M. G., Potapov, V. K., and Shabarova, Z. A. (1985) Condensation of oligodeoxyribonucleotide phosphorimid-azolidates within a complementary complex—a general method for the synthesis of natural and modified DNA duplexes. Bioorg. Khim. 11, 239–247.Google Scholar
  206. 198.
    Shabarova, Z. A., Ivanovskaya, M. G., and Gottikh, M. B. (1991) N-Hydroxy-benzotriazole esters of oligonucleotides. Phosphorylating agents in an aqueous medium. A new class or reagent for template-directed synthesis of inter-nucleotide bonds and for obtaining oligonucleotide derivatives, in Nucleic Acids Chem. vol 4 (Townsend, L. and Stuart, R. S., eds.), Wiley, New York, pp. 386–390.Google Scholar
  207. 199.
    Kanaya, E. and Yanagawa, H. (1986) Template-directed polymerization of oligoadenylates using cyanogen bromide. Biochemistry 25, 7423–7430.CrossRefGoogle Scholar
  208. 200.
    Dolinnaya, N. G., Sokolova, N. I., Ashirbekova, D. T., and Shabarova, Z. A. (1991) The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Nucl. Acids Res. 19, 3067–3072.CrossRefGoogle Scholar
  209. 200a.
    Dolinnaya, N. G., Tsytovich, A. V., Sergeev, V. N., Oretskaya, T., and Shabarova, Z. A. (1991) Structural and kinetic aspects of chemical reactions in DNA-duplexes. Information on DNA local structure obtained from chemical ligation data. Nucl. Acids Res. 19, 3073–3080.CrossRefGoogle Scholar
  210. 200b.
    Merenkova, I. N., Sokolova, N. I., and Shabarova, Z. A. (1991) New technology non-enzymatic assembly of a gene. Nucl. Acids Res. 24, 261.Google Scholar
  211. 201.
    Hsu, C.-Y. J., Don, D., and Jones, R. A. (1985) Synthesis and physical characterization of bis 3′–5′ cyclic dinucleotides (cycloNpNp): RNA polymerase inhibitors. Nucleosides & Nucleotides 4, 377–389.CrossRefGoogle Scholar
  212. 202.
    de Vroom, E., Broxterman, H. J. G., Sliedregt, L. A. J. M., van der Marel, G. A., and van Boom, J. H (1988) Synthesis of cyclic oligonucleotides by a modified phosphotriester approach. Nucl. Acids Res. 16, 4607–4620.CrossRefGoogle Scholar
  213. 203.
    Capobianco, M. L., Carcuro, A., Tondelli, L., Garbesi, A., and Bonora, G. M. (1990) One pot solution synthesis of cyclic oligodeoxyribonucleotides. Nucl. Acids Res. 18, 2661–2669.CrossRefGoogle Scholar
  214. 204.
    Kool, E. T. (1991) Molecular recognition by circular oligonucleotides: increasing the selectivity of DNA binding. J. Amer. Chem. Soc. 113, 6265–6266.CrossRefGoogle Scholar
  215. 205a.
    von Tigerstrom, R., Jahnke, P., and Smith, M. (1975) The synthesis of the internucleotide (phosphodiester) bond by a base-catalysed reaction. Nucl. Acids Res. 2, 1727–1736.CrossRefGoogle Scholar
  216. 205b.
    Kimura, J., Fujisawa, Y., Yoshizawa, T., Fukuda, K., and Mitsunobu, O. (1979) Studies on nucleosides and nucleotides. VII. Preparation of pyrimidine nucleoside 5′-phosphates and N 3,5′-purine cyclonucleosides by selective activation of the 5′-hydroxyl group. Bull. Chem. Soc. Japan 52, 1191–1196.CrossRefGoogle Scholar
  217. 206.
    Kawana, M. and Kuzuhara, H. (1984) The synthesis of partially-protected 2′-deoxyribonucleotide dimers by the selective phosphorylation of stannylated nucleosides. Bull. Chem. Soc. Japan 57, 3317–3320.CrossRefGoogle Scholar
  218. 207.
    Schott, H. (1975) Template chromatography on immobilized oligonucleotides. Synthesis and application of oligodeoxyadenosine-5′-phosphate-DEAE-cellulose. J. Chromatography 115, 461–476.CrossRefGoogle Scholar
  219. 208.
    Schott, H. (1985) Nucleobases, nucleosides, nucleotides, in High Performance Liquid Chromatography in Biochemistry (Henschen, A., ed.), Verlag Chemie, Weinheim, pp. 413–444.Google Scholar
  220. 209.
    Seliger, H., Haas, B., Holupirek, M., Knable, T., Tüdling, G., and Philipp, M. (1980) Non-stepwise methods in the preparation of building blocks for polynucleotide synthesis. Nucl. Acids Symp. Ser. 7, 191–202.Google Scholar
  221. 210.
    Seliger, H. and Knäble, T. (1978) Parameters and sequence-length distribution of enzymatic nucleotide copolycondensations. Nucl. Acids Res. Spec. Publ. 4, sl67–sl70.Google Scholar
  222. 211.
    Shum, B. W.-K. and Crothers, D. (1978) Simplified methods for large-scale enzymatic synthesis of oligoribonucleotides. Nucl. Acids Res. 5, 2297–2311.CrossRefGoogle Scholar
  223. 212.
    Yamauchi, H. and Machida, H. (1986) Continuous production of homopoly-nucleotides by immobilized polynucleotide phosphorylase. J. Ferment. Technol. 64, 517–522.CrossRefGoogle Scholar
  224. 213.
    Dattagupta, N., Rae, P., Crothers, D., and Barnett, T. (1986) Large scale production of DNA probes. Eur. Pat. Appl., 13 pp. EP 184056 A2.Google Scholar
  225. 214.
    Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (eds.) (1990) PCR Protocols. A Guide to Methods and Applications. Academic, San Diego.Google Scholar
  226. 215.
    Wyatt, J. R., Chastain, M., and Puglisi, J. D. (1991) Synthesis and purification of large amounts of RNA oligonucleotides. BioTechniques 11, 764–769.Google Scholar
  227. 216.
    Zhenodarova, S. M., Smolyaninova, O. A., Soboleva, I. A., and Khabarova, M. I. (1987) Stepwise synthesis of oligonucleotides. XXXIV. Preparative synthesis of trinucleoside diphosphates and longer oligoribonucleotides with immobilized ribonucleases. Bioorg. Khim. 13, 1023–1030.Google Scholar
  228. 217.
    Gillam, S., Jahnke, P., and Smith, M. (1978) Enzymic synthesis of oligodeoxyribonucleotides of defined sequence. J. Biol. Chem. 253, 2532–2539.Google Scholar
  229. 217a.
    Ohtsuka, E., Tanaka, S., Hayashi, M., and Ikehara, M. (1979) Polynucleotides 58. A method for the synthesis of oligonucleotide by single addition of 2′-O-(o-nitrobenzyl)nucleoside 5′-diphosphates using polynucleotide phosphorylase. Biochim. Biophys. Acta 565, 192–198.Google Scholar
  230. 218.
    Schott, H. and Schrade, H. (1984) Single-step elongation of oligodeoxynucleotides using terminal deoxynucleotidyl transferase. Eur. J. Biochem. 143, 613–620.CrossRefGoogle Scholar
  231. 218a.
    Heidenreich, O. and Eckstein, F. (1991) Inhibition of the reverse transcriptase of HIV-1 by 3′-azidothymidine triphosphate and 3′-azido-oligothymidylate. Nucleosides & Nucleotides 10, 535–536.CrossRefGoogle Scholar
  232. 219.
    Uhlenbeck, O. and Gumport, R. I. (1982) T4 RNA Ligase, in The Enzymes (Boyer, P. D., ed,), 3rd Ed., vol. 15, Academic, New York, pp. 31–58.Google Scholar
  233. 219a.
    Middleton, T., Herlihy, W. C., Schimmel, P. R., and Munro, H. N. (1985) Synthesis and purification of oligoribonucleotides using T4 RNA ligase and reverse-phase chromatography. Anal. Biochem. 144, 110–117.CrossRefGoogle Scholar
  234. 220.
    Venyaminova, A. G., Vratskikh, L. V., Repkova, M. N., and Yamkovoy, V. I. (1991) Preparative synthesis of short oligoribonucleotides by immobilized RNA ligase of T4 bacteriophage. Nucl. Acids Symp. Ser. 24, 305.Google Scholar
  235. 221.
    Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G., and Rich, A. (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686.CrossRefGoogle Scholar
  236. 221a.
    Miller, P. S., Cheng, D. M., Dreon, N., Jayaraman, K., Kan, L.-S., Leutzinger, E. E., Pulford, S. M., and Ts’o, P. O. P. (1980) Preparation of a decadeoxy-ribonucleotide helix for studies by nuclear magnetic resonance. Biochemistry 19, 4688–4698.CrossRefGoogle Scholar
  237. 221b.
    Weiss, M. A., Patel, D. J., Sauer, R. T., and Karplus, M. (1984) Two-dimensional 1H-NMR study of the λ operator site OL1: A sequential assignment strategy and its application. Proc. Natl. Acad. Sci. USA 81, 130–134.CrossRefGoogle Scholar
  238. 222a.
    Gaffney, B. L., Marky, L. A., and Jones, R. A. (1984) Synthesis and characterization of a set of four dodecadeoxyribonucleoside undecaphosphates containing O 6-methylguanine opposite adenine, cytosine, guanine and thymine. Biochemistry 23, 5686–5691.CrossRefGoogle Scholar
  239. 222b.
    Gaffney, B. L. and Jones, R. A. (1988) Large-scale oligonucleotide synthesis by the H-phosphonate method. Tetrahedron Lett. 29, 2619–2622.CrossRefGoogle Scholar
  240. 223.
    Mueller, B. C. (1989) Automatisierte DNA-Synthese im Milligrammasstab. BioEngineering 5, 44–46.Google Scholar
  241. 224.
    Ikehara, M. (1974) Synthesis of ribooligonucleotides having sequences of transfer ribonucleic acids. Ace. Chem. Res. 7, 92–96.CrossRefGoogle Scholar
  242. 225.
    Alul, R. H., Singman, C. N., Zhang, G., and Letsinger, R. L. (1991) Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives. Nucl. Acids Res. 19, 1527–1532.CrossRefGoogle Scholar
  243. 226.
    Eritja, R., Robles, J., Fernandez-Forner, D., Albericia, F., Giralt, E., and Pedroso, E. (1991) NPE-resin, a new approach to the solid-phase synthesis of protected peptides and oligonucleotides I: synthesis of the supports and their application to oligonucleotides synthesis. Tetrahedron Lett. 32, 1511–1514.CrossRefGoogle Scholar
  244. 227.
    Lyttle, M. H., Cook, R. M, and Wright, P. B. (1988) Large-scale automated DNA synthesis. BioPharm. Manuf. 1, 34–38.Google Scholar
  245. 228.
    Andrus, A., Vu, H., Ramstad, P., and Pallas, M. (1991) Large scale automated synthesis of oligonucleotides. Nucl. Acids Symp. Ser. 24, 41, 42.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1993

Authors and Affiliations

  • H. Seliger
    • 1
  1. 1.Polymer SectionUniversity of UlmUlmGermany

Personalised recommendations