• Bernhard H. J. Juurlink
  • Leif Hertz
Part of the Neuromethods book series (NM, volume 23)


The central nervous system (CNS) is characterized by an immense structural complexity with intimate associations of its constituent cell types: neurons and different types of glial cells, mainly oligodendrocytes and astrocytes. A century ago (1893) described what are now called protoplasmic astrocytes found in grey matter and fibrous astrocytes found in white matter. As their name implies, astrocytes are generally process-bearing cells. A characteristic of all astrocytes, but particularly those in grey matter, is the enormous surface area owing to the extensive branching of the cellular processes; this process formation results in astrocytes being structurally highly complex. The cellular processes of fibrous astrocytes are generally fingerlike, whereas those of the protoplasmic astrocytes are variable in shape and closely follow the contours of adjacent cells. The protoplasmic astrocytic processes often end as thin sheets that surround synapses (see Narlieva, 1988). The protoplasmic astrocyte can be divided into a number of distinct morphological forms (Palay and Chan-Palay, 1974; Kosaka and Hama, 1986). In addition, the cellular processes of astrocytes impinge on small blood vessels as perivascular endfeet and astrocytic foot processes also terminate on the pia mater forming the glia limitans (Peters et al., 1976).


Glial Fibrillary Acidic Protein Minimum Essential Medium Astrocyte Culture Glia Limitans Astroglial Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abney E. R., Bartlett P. P., and Raff M. C. (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev. Biol. 83, 301–310.PubMedCrossRefGoogle Scholar
  2. 2.
    Aloisi F., Agresti C., and Levi G. (1988) Establishment, characterization and evolution of cultures enriched in type-2 astrocytes. J. Neurosci. Res., 21, 188–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Andriezen W. L. (1893) The neuroglia elements of the brain. Br. Med. J. 2, 227–230.PubMedCrossRefGoogle Scholar
  4. 4.
    Angevine J. B. (1965) Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. Suppl. 1, 1–39.Google Scholar
  5. 5.
    Aoki G, Joh T. H., and Pickel V. M. (1987) Ultrastructural localization of immunoreactivity for beta-adrenergic receptors in cortex and neostriatum of rat brain. Brain Res. 437, 264–282.PubMedCrossRefGoogle Scholar
  6. 6.
    Bardakjian J., Tardy M., Pimoule G, and Gonnard P. (1979) GABA metabolism in cultured glial cells. Neurochem. Res. 4, 517–527.CrossRefGoogle Scholar
  7. 7.
    Barres B. A., Chun L. L. Y., and Corey D. P. (1988) Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes. Glia 1, 10–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Barres B. A., Chun L. L. Y., and Corey D. P. (1989) A calcium current in cortical astrocytes: induction by cAMP and neurotransmitters, and permissive effects of serum factors. J. Neurosci. 9, 3169–3175.PubMedGoogle Scholar
  9. 9.
    Barres B. A., Koroshetz W. J., Swartz K. J., Chun L. L. Y., and Corey D. P. (1990) Ion channel expression by white matter glia: the O2A progenitor cell. Neuron 4, 507–524.PubMedCrossRefGoogle Scholar
  10. 10.
    Beaudet A. and Descarries L. (1984) Fine structure of monoamine axon terminals in cerebral cortex, in Monoamine lnnervation of Cerebral Cortex (Descarries L., Reader T. R., and Jasper H. H., eds.), Liss, New York, pp. 77–93.Google Scholar
  11. 11.
    Behar T., McMorris F. A., Novotny’ E. A., Barker J. L., and Dubois-Dalq M. (1988) Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J. Neurosci. Res. 21, 168–180.PubMedCrossRefGoogle Scholar
  12. 12.
    Bignami A. and Dahl D. (1977) Specificity of glial fibrillary acidic protein for astroglia. J. Histochem. Cytochem., 25, 466–469.PubMedCrossRefGoogle Scholar
  13. 13.
    Bock E., Jorgensen O. S., Dittman L, and Eng L. F. (1975) Determination of brain-specific antigens in short-term cultivated rat astroglia cells and in rat synaptosomes. J. Neurochem. 25, 867–870.PubMedCrossRefGoogle Scholar
  14. 14.
    Bockaert J. and Ebersolt C. (1988) a-Adrenergic receptors on glial cells, in Glial Cell Receptors (Kimelberg H. K., ed.), Raven Press, New York, pp. 35–51.Google Scholar
  15. 15.
    Booher J. and Sensenbrenner M. (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human cells in flask cultures. Neurobiology 2, 97–105.PubMedGoogle Scholar
  16. 16.
    Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–266.CrossRefGoogle Scholar
  17. 17.
    Brenneman D. E., Neale E. A., Foster G. A., d’Autremont S. W., and Westbrook G. L. (1987) Non-neuronal cells mediate neurotrophic action of vasoactive intestinal peptide, J. Cell Biol. 104, 1603–1610.PubMedCrossRefGoogle Scholar
  18. 18.
    Bullaro J. C. and Brookman D. H. (1976) Comparison of skeletal muscle monolayer cultures initiated with cells dissociated by the vortex and trypsin methods. In Vitro 12, 564–570.PubMedCrossRefGoogle Scholar
  19. 19.
    Cammer W. (1990) Glutamine synthetase in the central nervous system is not confined to astrocytes. J. Neuroimmunol. 26, 173–178.PubMedCrossRefGoogle Scholar
  20. 20.
    Cole R. and de Vellis J. (1989) Primary cultures of astrocyte and oligoden-drocyte cultures from primary rat glial cultures, in A Dissection and Tissue Culture Manual for the Nervous System (Shahar A., de Vellis J., Vernadakis A., and Haber B. eds.), Liss, New York, pp. 121–133.Google Scholar
  21. 21.
    Cooper A. J. L., Vergara F., and Duffy T. E. (1983) Cerebral glutamine synthetase, in Glutamine, Glutamate, and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schousboe A. eds.), Liss, New York, pp. 77–93.Google Scholar
  22. 22.
    Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., and Smith S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Amelio F., Eng L. F., and Gibbs M. A. (1990) Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system. Glia 3, 335–341.CrossRefGoogle Scholar
  24. 24.
    Devon R. M. and Juurlink B. H. J. (1988) Structural complexity of primary cultures of astrocytes as revealed by transverse sections. Glia 1, 151–155.PubMedCrossRefGoogle Scholar
  25. 25.
    Devon R. M. and Juurlink B. H. J. (1989) Dynamic morphological responses of mouse astrocytes in primary cultures following medium changes. Glia 2, 266–272.PubMedCrossRefGoogle Scholar
  26. 26.
    Doering L. C, Fedoroff S., and Devon R. M. (1983) Fibrous astrocytes and reactive astrocyte-like cells in transplants of cultured astrocyte precursor cells. Dev. Brain Res. 6, 183–189.CrossRefGoogle Scholar
  27. 27.
    Drejer J., Larsson O. M., and Schousboe A. (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259–269.PubMedCrossRefGoogle Scholar
  28. 28.
    Ebersolt C, Perez M., and Bockaert J. (1981) α1 and α2 adrenergic receptors in mouse brain astrocytes from primary cultures. J. Neurosci. Res. 6, 643–652.PubMedCrossRefGoogle Scholar
  29. 29.
    Eisenbarth G. S., Walsh F. S., and Niremberg M. (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci. 76, 4913–4917.PubMedCrossRefGoogle Scholar
  30. 30.
    Eng L. F., Vanderhaeghen J. J., Bignami A., and Gerstl B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354.PubMedCrossRefGoogle Scholar
  31. 31.
    Facci L., Skaper S. D., Levin D. L., and Varon S. (1987) Dissociation of the stellate morphology from intracellular cyclic AMP levels in cultured rat brain astroglial cells: Effects of ganglioside GM, and lysophosphatidylserine. J. Neurochem. 48, 566–573.PubMedCrossRefGoogle Scholar
  32. 32.
    Fages C, Khelil M., Rolland B., Bridoux A. M., and Tardy M. (1988) Glutamine synthetase: a marker of an astroglial subpopulation in primary cultures of defined brain areas. Dev. Neurosci. 10, 47–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Fedoroff S. (1977) Primary cultures, cell lines, and cell strains, in Cell, Tissue and Organ Cultures in Neurobiology (Fedoroff S. and Hertz L., eds.), Academic Press, New York, pp. 265–286.Google Scholar
  34. 34.
    Fedoroff S. and Hall C. H. (1979) Effect of horse serum on neural cell differentiation in tissue culture. In Vitro 15, 641–648.PubMedGoogle Scholar
  35. 35.
    Fedoroff S., White R., Neal J., Subramanyan L., and Kalnins V. I. (1983) Astrocyte cell lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin-and GFP-containing intermediate filaments. Dev. Brain Res. 7, 303–315.CrossRefGoogle Scholar
  36. 36.
    Fedoroff S., McAuley W. A. J., Houle J. D., and Devon R. M. (1984) Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J. Neurosci. Res. 12, 15–27.CrossRefGoogle Scholar
  37. 37.
    ffrench-Constant C. and Raff M. C. (1986a) The oligodendrocyte-type-2 astrocyte lineage is specialized for myelination. Nature 323, 335–338.PubMedCrossRefGoogle Scholar
  38. 38.
    ffrench-Constant C. and Raff M. C. (1986b) Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319, 499–502.PubMedCrossRefGoogle Scholar
  39. 39.
    Foote S. L., Bloom F. E., and Aston-Jones G. (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914.PubMedGoogle Scholar
  40. 40.
    Gallo V., Bertolotto A., and Levi G. (1987) The proteoglycan chondroitin sulf ate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 123, 282–285.PubMedCrossRefGoogle Scholar
  41. 41.
    Gallo V., Giovannini C, Suergiu R., and Levi G. (1989) Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte lineage. J. Neurochem. 52, 1–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Giulian D. (1988) The immune response and astrogliosis: control of astroglial growth by secretion of microglial peptides, in The Biochemical Pathology of Astrocytes (Norenberg M. D., Hertz L., and Schousboe A., eds.), Liss, New York, pp. 91–105.Google Scholar
  43. 43.
    Goldman J. E. and Chiu F. C. (1984) Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes. Brain Res. 306, 85–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Hallermayer K., Harmening C, and Hamprecht B. (1981) Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J. Neurochem., 37, 43–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Hansson E. and Rönnbäck L. (1988) Neurons from substantia nigra increase the efficacy and potency of second messenger arising from striatal astroglia dopamine receptor. Glial 1, 393–397.CrossRefGoogle Scholar
  46. 46.
    Hansson E., Rönnbäck L., and Sellstrom A. (1984) Is there a ‘dopaminergic glial cell’? Neurochem. Res. 9, 679–689.PubMedCrossRefGoogle Scholar
  47. 47.
    Hansson E. and Rönnbäck L. (1989) Primary cultures of astroglia and neurons from different brain regions, in A Dissection and Tissue Culture Manual for the Nervous System (Shahar A., de Vellis J., Vernadakis A., and Haber B., eds.), Liss, New York, pp. 92–104.Google Scholar
  48. 48.
    Hao C, Guilbert L. J., and Fedoroff S. (1990) Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J. Neurosci. Res. 27, 314–323.PubMedCrossRefGoogle Scholar
  49. 49.
    Hatten M. E. (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 100, 384–396.PubMedCrossRefGoogle Scholar
  50. 50.
    Hertz L. (1989a) Is Alzheimer’s disease an anterograde degeneration, originating in the brainstem, and disrupting metabolic and functional interactions between neurons and glial cells. Brain Res. Rev. 14, 335–353.PubMedCrossRefGoogle Scholar
  51. 51.
    Hertz L. (1989b) Functional interactions between neurons and glial cells, in Regulatory Mechanisms of Neuron to Vessel Communication in Brain (Govoni S., Battani F., Magnoni M. S., and Trabluchi M., eds.), Springer, Heidelberg, pp. 271–303.CrossRefGoogle Scholar
  52. 52.
    Hertz L. (1990a). Regulation of potassium homeostasis by glial cells, in Differentiation and Functions of Glial Cells (Levi G., ed.), Liss, New York, pp. 225–234.Google Scholar
  53. 53.
    Hertz L. (1990b) Dibutyryl cyclic AMP treatment of astrocytes in cultures as a substitute for normal morphogenic and functiogenic’ transmitter signals, in Molecular Aspects of Development and Aging of the Nervous System (Lauder J., Privat A., Giacobini E., Timiras P., and Vernadakis A., eds.), Plenum, New York, pp. 227–243.Google Scholar
  54. 54.
    Hertz L. (1991) Neuronal-astrocytic interactions in brain development, brain function and brain disease, in Plasticity and Regeneration of the Nervous System (Timiras P. S., Privat A., Giacobini E., Lauder J., and Vernadakis A., eds.), Plenum, New York, pp. 143–159.CrossRefGoogle Scholar
  55. 55.
    Hertz L., Bock E., and Schousboe A. (1978) GFA content, glutamate uptake and activity of glutamate metabolizng enzymes in differentiating mouse astrocytes in primary cultures. Dev. Neurosci. 1, 226–238.CrossRefGoogle Scholar
  56. 56.
    Hertz L., Juurlink B. H. J., Fosmark H., and Schousboe A. (1982) Astrocytes in primary culture, in Neuroscience Approached Through Cell Culture (Pfeiffer S. E., ed.), CRC Press, Boca Raton, FL, pp. 157–174.Google Scholar
  57. 57.
    Hertz L., Juurlink B. H.J., and Szuchet S. (1985a) Cell cultures, in Handbook of Neurochemistry (Lajtha A., ed.), Plenum, New York, pp. 603–661.Google Scholar
  58. 58.
    Hertz L., Juurlink B. H. J., Szuchet S., and Walz W. (1985b) Cell and tissue cultures, in Neuromethods, vol. 1 (Boulton A. and Baker G. B., eds.), Humana Press, Clifton, NJ, pp. 117–167.Google Scholar
  59. 59.
    Hertz L., Juurlink B. H. J., Hertz E., Fosmark H., and Schousboe A. (1989a) Preparation of primary cultures of mouse (rat) astrocytes, in A Dissection and Tissue Culture Manual for the Nervous System (Shahar A., de Vellis J., Vernadakis A., and Haber B., eds.), Liss, New York, pp. 104–108.Google Scholar
  60. 60.
    Hertz L., Bender A. S., Woodbury D. M., and White H. S. (1989b) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J. Neurosci. Res. 22, 209–215.PubMedCrossRefGoogle Scholar
  61. 61.
    Hertz L., McFarlin D. E., and Waksman B. H. (1990) Astrocytes: auxiliary cells for immune response in the central nervous system? Immunol. Today 11, 265–268.PubMedCrossRefGoogle Scholar
  62. 62.
    Hinds J. W. (1966) Autoradiographic study in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol. 134, 287–304.CrossRefGoogle Scholar
  63. 63.
    Holopainen I. and Kontro P. (1986) High-affinity uptake of taurine and b-alanine in primary cultures of rat astrocytes. Neurochem. Res. 11, 211–215.CrossRefGoogle Scholar
  64. 64.
    Hughes S. M., Lillien L. E., Raff M. C., Rohrer H., and Sendtner M. (1988) Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature 335, 70–73.PubMedCrossRefGoogle Scholar
  65. 65.
    Hydén H. (1959) Quantitative assay of compounds in isolated, fresh nerve cells and glial cells from control and stimulated animals. Nature 184, 433–435.PubMedCrossRefGoogle Scholar
  66. 66.
    Ingraham C. A. and McCarthy K. D. (1989) Plasticity of process-bearing glial cell cultures from neonatal rat cerebral cortical tissue. J. Neurosci. 9, 63–69.PubMedGoogle Scholar
  67. 67.
    Janzer R. C. and Raff M. C. (1987) Astrocytes induce blood-brain properties in endothelial cells. Nature 325, 253–257.PubMedCrossRefGoogle Scholar
  68. 68.
    Johnstone S. R., Levi G., Wilkin G. P., Schneider A., and Ciotti M. T. (1986) Subpopulations of rat cerebellar cells in primary culture: morphology, cell surface antigens and [’I-TjGABA transport. Deo. Brain Res. 24, 63–75.CrossRefGoogle Scholar
  69. 69.
    Juurlink B. H. J. and Devon R. M. (1990) Macromolecular translocation—a possible function of astrocytes. Brain Res. 533, 73–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Juurlink B. H. J. and Hertz L. (1985) Plasticity of astrocytes in primary cultures: an experimental tool and a reason for methodological caution. Dev. Neurosci. 7, 263–267.PubMedCrossRefGoogle Scholar
  71. 71.
    Juurlink B. H. J. and Hertz L. (1991) Establishment of highly enriched type-2 astrocyte cultures and quantitative determination of intense glutamine synthetase activity in these cells. J. Neurosci. Res. 30, 531–539.PubMedCrossRefGoogle Scholar
  72. 72.
    Juurlink B. H. J., Fedoroff S., Hall C, and Nathaniel E. J. H. (1981a) Astrocyte cell lineage. I. Astrocyte progenitor cells in mouse neopallium. J. Comp. Neurol. 200, 375–391.PubMedCrossRefGoogle Scholar
  73. 73.
    Juurlink B. H. J., Schousboe A., Jorgensen O. S., and Hertz L. (1981b) Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures. J. Neurochem. 36, 136–148.PubMedCrossRefGoogle Scholar
  74. 74.
    Kosaka T. and Hama K. (1986) Three-dimensional structure of astrocytes in the rat dentate gyrus. J. Comp. Neurol. 249, 242–260.PubMedCrossRefGoogle Scholar
  75. 75.
    Lauder J. M. (1988) Neurotransmitters as morphogens. Progr. Brain Res. 73, 365–387.CrossRefGoogle Scholar
  76. 76.
    Levi G., Wilkin G. P., Ciotti M. T., and Johnstone S. (1983) Enrichment of differentiated stellate astrocytes in cerebellar interneuron cultures as studied by GFAP immunofluorescence and autoradiographic uptake patterns with [3H] D-aspartate and [3H]GABA. Dev. Brain Res. 10, 227–241.CrossRefGoogle Scholar
  77. 77.
    Levi G., Gallo V., and Ciotto M. T. (1986) Bipotential precursors of putative type 2 astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and ‘neuron-like’ g-amino acid transport. Proc. Natl. Acad. Sd. 83, 1504–1508.CrossRefGoogle Scholar
  78. 78.
    Lillien L. E., Sendtner M., and Raff M. C. (1990) Extracellular matrix-associated molecules collaborate with ciliary neuronotrophic factor to induce type-2 astrocyte development. J. Cell Biol. 111, 635–644.PubMedCrossRefGoogle Scholar
  79. 79.
    MacVicar B. A. (1984) Voltage-dependent calcium channels in glial cells. Science 226, 1345–1347.PubMedCrossRefGoogle Scholar
  80. 80.
    Manthorpe M., Adler R., and Varon S. (1979) Development, reactivity and GFA imrnunofluorescence of astroglial containing monolayer cultures from rat cerebrum. J. Neurocytol. 8, 605–621.PubMedCrossRefGoogle Scholar
  81. 81.
    McCarthy K. D. and de Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  82. 82.
    McCarthy K. D., Salm A., and Lerea L. S. (1988) Astroglial receptors and their regulation of intermediate filament protein phosphorylation, in Glial Cell Receptors (Kimelberg H. K., ed.), Raven Press, New York, pp. 1–22.Google Scholar
  83. 83.
    Mearow K. M., Mill J. F., and Vitkovic L. (1989) The ontogeny and localization of glutamine synthetase gene expression in rat brain. Mol. Brain Res. 6, 223–232.PubMedCrossRefGoogle Scholar
  84. 84.
    Meier E., Hertz L., and Schousboe A. (1991) Neurotransmitters as developmental signals. Neurochetn. Int. 19, 1–15.CrossRefGoogle Scholar
  85. 85.
    Miller R. H. and Raff M. C. (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J. Neurosti. 4, 585–592.Google Scholar
  86. 86.
    Miller R. H., David S., Patel R., Abney E. A., and Raff M. C. (1985) A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocytic lineages. Dev. Biol. 11, 35–41.CrossRefGoogle Scholar
  87. 87.
    Miller R. H., Abney E. R., David S., ffrench-Constant C, Lindsay R., Patel R., Stone J., and Raff M. C. (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes? J. Neurosci. 6, 22–29.PubMedGoogle Scholar
  88. 88.
    Minturn J. E., Black J. A., Angelides K.J., and Waxman S. G. (1990) Sodium channel expression detected with antibody 7493 in A2B5+ and A2B5 astrocytes from rat optic nerve in vitro. Glia 3, 358–367.PubMedCrossRefGoogle Scholar
  89. 89.
    Mobley P. L., Scott S. L., and Cruz E. G. (1986) Protein kinase C in astrocytes: a determinant of cell morphology. Brain Res. 398, 366–369.PubMedCrossRefGoogle Scholar
  90. 90.
    Moonen G., Cam Y., Sensenbrenner M., and Mandel P. (1975) Variability of the effects of serum-free medium, dibutyryl-cyclic AMP on newborn rat astroblasts. Cell Tissue Res. 163, 365–372.PubMedCrossRefGoogle Scholar
  91. 91.
    Narlieva N. (1988) Multilamellar glial envelopes of synapses in the pontine nuclei of the cat. Ada Anat. 131, 227–230.Google Scholar
  92. 92.
    Norenberg M. D. and Martinez-Hernandez A. (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–310.PubMedCrossRefGoogle Scholar
  93. 93.
    Norton W. T. and Poduslo S. E. (1970) Neuronal soma and whole neuroglia of rat brain: a new isolation technique. Science 167, 1144–1146.PubMedCrossRefGoogle Scholar
  94. 94.
    Norton W. T. and Farooq M. (1989) Astrocytes cultured from mature brain derive from glial precursor cells. J. Neurosci. 9, 769–775.PubMedGoogle Scholar
  95. 95.
    Nowak L., Ascher P., and Berwald-Netter Y. (1987) Ionic channels in mouse astrocytes in culture. J. Neurosci. 7, 101–109.PubMedGoogle Scholar
  96. 96.
    Palay S. L. and Chan-Palay V. (1974) Cerebellar Cortex. Cytology and Organization. Springer-Verlag, New York.CrossRefGoogle Scholar
  97. 97.
    Paterson I. A. and Hertz L. (1989) Sodium-independent transport of noradrenaline in mouse and rat astrocytes in primary culture. J. Neurosci. Res. 23, 71–77.PubMedCrossRefGoogle Scholar
  98. 98.
    Penfield W. (1932) Cytology & Cellular Pathology of the Nervous System, vol. 2. Paul B. Hoeber Inc., New York.Google Scholar
  99. 99.
    Peng L., Juurlink B. H. J., and Hertz L. (1991) Development of cerebellar granule cells in the presence and absence of excess extracellular potassium—do the two culture systems provide a means of distinguishing between events in transmitter-related and non-transmitter-related glu-tamate pools. Dev. Brain Res. 63, 1–12.CrossRefGoogle Scholar
  100. 100.
    Peters A., Palay S. L., and Webster H. deF. (1976) The Fine Structure of the Nervous System: the Neurons and Supporting Cells. W. B. Saunders Co., Philadelphia.Google Scholar
  101. 101.
    Pontén J. and MacIntyre E. H. (1968) Long term culture of normal and neo-plastic human glia. Act. Pathol. Microbiol. Scand. 74, 465–486.CrossRefGoogle Scholar
  102. 102.
    Pope A. (1978) Neuroglia: quantitative aspects, in Dynamic Properties of Glia Cells (Schoffeniels E., Franck G., Hertz L., and Tower D. B., eds.), Pergamon Press, Oxford, pp. 13–20.Google Scholar
  103. 103.
    Privat A. (1975) Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 40, 281–323.PubMedCrossRefGoogle Scholar
  104. 104.
    Quandt F. N. and MacVicar B. A. (1986) Calcium activated potassium channels in cultured astrocytes. Neuroscience 19, 29–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Raff M. C. (1989) Glial cell diversification in the rat optic nerve. Science 243, 1450–1455.PubMedCrossRefGoogle Scholar
  106. 106.
    Raff M. C. and Miller R. H. (1984) Glial cell development in the rat optic nerve. Trends Neurosci. 7, 469–472.CrossRefGoogle Scholar
  107. 107.
    Raff M. C, Miller R. R, and Noble M. (1983a) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending upon culture medium. Nature 303, 390–396.PubMedCrossRefGoogle Scholar
  108. 108.
    Raff M. C, Abney E. R., Cohen J., Lindsay R., and Noble M. (1983b) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3, 1289–1300.PubMedGoogle Scholar
  109. 109.
    Raff M. C, Mirsky R., Fields K. L., Lisak R. P., Dorfman S. H., Silberberg D. H., Gregson N. A., Liebowitz S., and Kennedy M. C. (1978) Galacto-cerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816.PubMedGoogle Scholar
  110. 110.
    Ramon y Cajal S. (1909) Histologie du System Nerveux de I’Homme et des Vértébrés. Masson & Cie., Paris.Google Scholar
  111. 111.
    Reichelt W., Dettmer D., Brückner G., Brust P., Eberhardt W., and Reichenbach A. (1989) Potassium as a signal for both proliferation and differentiation of rabbit retina (Müller) glia growing in culture. Cell Signal. 1, 187–194.PubMedCrossRefGoogle Scholar
  112. 112.
    Reynolds R. and Herschkowitz H. (1987) Oligodendroglial and astroglial heterogeneity in mouse primary central nervous system culture as demonstrated by differences in GABA and D-aspartate transport and immunocytochemistry. Dev. Brain Res. 36, 13–25.CrossRefGoogle Scholar
  113. 113.
    Rousselet A., Autillo-Touati A., Araud D., and Prochiantz A. (1990) In vitro regulation of neuronal morphogenesis and polarity by astrocyte-derived factors. Dev. Biol. 137, 33–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Salm A. K. and McCarthy K. D. (1990) Norepinephrine-evoked calcium transients in cultured type 1 astroglia. Glia 3, 529–538.PubMedCrossRefGoogle Scholar
  115. 115.
    Schachner M., Hedley-White E. T., Hsu D. W., Schoonmaker G., and Bignami A. (1977) Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase staining. J. Cell Biol. 75, 67–73.PubMedCrossRefGoogle Scholar
  116. 116.
    Schousboe A., Hertz L., and Svenneby G. (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2, 217–229.CrossRefGoogle Scholar
  117. 117.
    Schousboe A. and Divac I. (1979) Differences in glutamate uptake in astrocytes cultured from different brain regions. Brain Res. 177, 407–409.PubMedCrossRefGoogle Scholar
  118. 118.
    Schousboe A., Drejer J., and Hertz L. (1988) Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures, in Glutamine and Glutamate in Mammals (Kvamme E., ed.), CRC Press, Boca Raton, FL, pp. 21–38.Google Scholar
  119. 119.
    Sensenbrenner M., Devillers G., Bock E., and Porte A. (1980) Biochemical and ultrastructural studies of cultured rat astroglial cells. Effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation 17, 51–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Shank R. P., Bennett G. S., Freytag S. O., and Campbell G. Le M. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364 367.PubMedCrossRefGoogle Scholar
  121. 121.
    Shein H. M. (1965) Propagation of human fetal spongioblasts and astrocytes in dispersed cell cultures. Exp. Cell Res. 40, 554–569.PubMedCrossRefGoogle Scholar
  122. 122.
    Somjen G. G. (1979) Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol. 41, 159–177.CrossRefGoogle Scholar
  123. 123.
    Somjen G. G. (1988) Nervenkitt: Notes on the history of the concept of neuroglia. Glia 1, 2–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Stieg P. E., Kimelberg H. K., Mazurkiewicz J. E., and Banker G. A. (1980) Distribution of glial fibrillary acidic protein and fibronectin in primary astroglial cultures from rat brain. Brain Res. 199, 493–500.PubMedCrossRefGoogle Scholar
  125. 125.
    Stallcup W. B. and Beasley L. (1987) Bipotential glial precursor cells of the optic nerve express NG2 proteoglycan. J. Neurosci. 7, 2737–2744.PubMedGoogle Scholar
  126. 126.
    Stone E. A. and Ariano M. A. (1989) Are glial cells targets of the central noradrenergic system? Brain Res. Rev. 14, 297–309.PubMedCrossRefGoogle Scholar
  127. 127.
    Sykova E. (1983) Extracellular K+ accumulation in the central nervous system. Progr. Biophys. Mol. Biol. 42, 135–189.CrossRefGoogle Scholar
  128. 128.
    Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., and Tomita F. (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2+ dependent protein kinase. Biochem. Biophys. Res. Comtnun. 135, 397–402.CrossRefGoogle Scholar
  129. 129.
    Tansey F. A., Farooq M., and Cammer W. (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J. Neurochem. 56, 266–272.PubMedCrossRefGoogle Scholar
  130. 130.
    Temple S. and Raff M. C. (1985) Differentiation of a bipotential glial progenitor cell in single cell culture. Nature 313, 223–225.PubMedCrossRefGoogle Scholar
  131. 131.
    Trimmer P. A., Evans T., Smith M. M., Harden T. K., and McCarthy K. D. (1984) Combination of immunocytochemistry and radioligand receptor assay to identify 3-adrenergic receptor subtypes on astroglia in vitro. J. Neurosci. 4, 1598–1606.PubMedGoogle Scholar
  132. 132.
    Trotter J. and Schachner M. (1989) Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes. Dev. Brain Res. 46, 115–122.CrossRefGoogle Scholar
  133. 133.
    Turing A. M. (1952) The chemical basis of morphogenesis. Trans. Roy. Soc. Lond. Ser. B 237, 37–72.CrossRefGoogle Scholar
  134. 134.
    Varon S. and Raiborn C. W. (1969) Dissociation, fractionation, and culture of embryonic brain cells. Brain Res. 12, 180–199.PubMedCrossRefGoogle Scholar
  135. 135.
    Walz W. (1989) Role of glial cells in the regulation of the brain ion microen-vironment. Progr. Neurobiol. 33, 309–333.CrossRefGoogle Scholar
  136. 136.
    Walz W. and Hertz L. (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Progr. Neurobiol. 20, 133–183.CrossRefGoogle Scholar
  137. 137.
    Walz W. and Kimelberg H. K. (1985) Differences in cation transport properties of primary astrocyte cultures from mouse and rat brain. Brain Res. 340, 333–340.PubMedCrossRefGoogle Scholar
  138. 138.
    Walz W. and Mozaffari B. (1987) Culture environment and channel-mediated potassium fluxes in astrocytes. Brain Res. 412, 405–408.PubMedCrossRefGoogle Scholar
  139. 139.
    Wandosell F., Bovolenta P., and Nieto-Sampedro M. (1990) Reactive astrocytes and DiBcAMP-treated astrocytes have different surface markers. Soc. Neurosci. Abst. 16, 351.Google Scholar
  140. 140.
    Warringa R. A. J., van Berlo M. F., Klein W., and Lopes-Cardozo M. (1988) Cellular localization of glutamine synthetase and lactate dehydrogenase in oligodendrocyte-enriched cultures from rat brain. Neurochem-istry 50, 1461–1468.CrossRefGoogle Scholar
  141. 141.
    Whitaker-Azmitia P. M. (1988) Astroglial serotonin receptors, in Glial Cell Receptors (Kimelberg H. K., ed.), Raven Press, New York, pp. 107–120.Google Scholar
  142. 142.
    Wolswijk G. and Noble M. (1989) Identification of an adult-specific glial progenitor cell. Development 105, 387–400.PubMedGoogle Scholar
  143. 143.
    Yanagihara N., Tachikawa E., Izumi F., Yasugawa S., Yamamoto H., and Miyamoto E. (1991) Staurosporine: an effective inhibitor for Ca2+/calmodulin-dependent protein kinase II. J. Neurochem. 56, 294–298.PubMedCrossRefGoogle Scholar
  144. 144.
    Yu A. C. H., Drejer J., Hertz L., and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. Totowa, New Jersey 1992

Authors and Affiliations

  • Bernhard H. J. Juurlink
    • 1
  • Leif Hertz
    • 1
  1. 1.Department of AnatomyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations