Advertisement

Neurons

  • Jeffrey R. Buchhalter
  • Marc A. Dichter
Part of the Neuromethods book series (NM, volume 23)

Abstract

There are several preparations that can be utilized to study the development of the vertebrate nervous system and the physiology and pharmacology of individual vertebrate neurons. These include both in vivo and in vitro preparations. The latter include brain slices (both conventional “thick” and new “thin” slices) as well as organotypic central nervous system (CNS) cultures and primary dissociated cell cultures. Each of these preparations can be appropriately utilized for particular kinds of studies and no single one of these is best for all neurobiological studies. This chapter will focus on the system of primary dissociated cell cultures of different parts of the mammalian CNS. These preparations have become more and more popular for studying issues related to the growth and development of the nervous system, the expression of neuron specific properties, and cellular physiology and pharmacology of mammalian CNS function.

Keywords

NMDA Receptor Hippocampal Neuron Thyrotropin Release Hormone Mammalian Central Nervous System Central Nervous System Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahmed Z., Walker P. S. and Fellows R. E. (1983) Properties of neurons from dissociated fetal rat brain serum-free culture. J. Neurosd. 3, 2448–2462.Google Scholar
  2. 2.
    Banker G. A. (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809, 810.PubMedCrossRefGoogle Scholar
  3. 3.
    Banker G. A. and Cowan M. (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425.PubMedCrossRefGoogle Scholar
  4. 4.
    Banker G. A. and Cowan W. M. (1979) Further observations of hippocampal neurons in dispersed cell culture. J. Comp. Neurol. 187, 469–494.PubMedCrossRefGoogle Scholar
  5. 5.
    Bartlett W. P. and Banker G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. J. Neurosd. 4, 1944–1953.Google Scholar
  6. 6.
    Bekkers J. M. and Stevens C. F. (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233.PubMedCrossRefGoogle Scholar
  7. 7.
    Bekkers J. M. and Stevens C. F. (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729.PubMedCrossRefGoogle Scholar
  8. 8.
    Borg J., Spitz B., Hamel G., and Mark J. (1985) Selective culture of neurons from rat cerebral cortex: morphological characterization, glutmate uptake, and related enzymes during maturation in various culture media. Dev. Br. Res. 18, 37–49.CrossRefGoogle Scholar
  9. 9.
    Bottenstein J. E. (1983) Defined media for dissociated neural cultures, in Current Methods in Cellular Neurobiology (Barker J. L. and McKelvy J. F., eds.), Wiley, New York, pp. 107–130.Google Scholar
  10. 10.
    Brenneman D. E., Neale E. A., Habig W. H., Bowers L. M., and Nelson P. G. (1983) Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures. Dev. Br. Res. 9, 13–27.CrossRefGoogle Scholar
  11. 11.
    Brenneman D. E., Fitzgerald S., and Nelson P. G. (1984) Interactions between trophic and electrical activity in spinal cord cultures. Dev. Br. Res. 15, 211–217.CrossRefGoogle Scholar
  12. 12.
    Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sd. 83, 1159–1162.CrossRefGoogle Scholar
  13. 13.
    Brewer G. J., Peterson C., and Cotman C. W. (1987) Long term survival of rat hippocampal neurons at low density: advantages of low oxygen. Soc. Neurosd. Abst. 13, 256.Google Scholar
  14. 14.
    Buchhalter J. R. and Dichter M. A. (1991) Electrophysiological comparison of pyramidal and stellate nonpyramidal neurons in dissociated cell culture of rat hippocampus. Brain Res. Bull. 26, 333–338.PubMedCrossRefGoogle Scholar
  15. 15.
    Buse E. (1985) A method for the collection of defined areas from the embryonic rat brain for cell and tissue culture. J. Neurosd. Methods 14, 177–186.CrossRefGoogle Scholar
  16. 16.
    Caceres A., Banker G. A., and Binder L. (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosd. 6, 714–722.Google Scholar
  17. 17.
    Choi D. W. (1987a) Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379.PubMedGoogle Scholar
  18. 18.
    Choi D. W., Maulucci-Gedde M., and Krigstein A. R. (1987b) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7, 357–368.PubMedGoogle Scholar
  19. 19.
    Choi D. W., Koh J., and Peters S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMD A antagonists. J. Neurosci. 8, 185–196.PubMedGoogle Scholar
  20. 20.
    Dal Toso R., Giorgi O., Soranzo C., Kirschner G., Ferrari G., Favaron M., Benvegnu D., Presti D., Vicini S., Toffano G., Azzone G. F., and Leon A. (1988) Development and survival of neurons in dissociated fetal mesencephalic serum-free culture: Effects of cell density and of an adult mammalian striatal-derived neuronotrophic factor (SDNF). J. Neurosci. 8(3), 733–745.Google Scholar
  21. 21.
    De Deyn P. P. and MacDonald R. L. (1987) CGS 9896 and ZK 91296, but not CGS 8216 and RO 15-1788, are pure benzodiazepine receptor antagonists on mouse neurons in culture. J. Pharm. Exp. Therap. 2421, 48–55.Google Scholar
  22. 22.
    Delfs J. and Dichter M. (1983) Effects of somatostatin on cortical neurons in culture. J. Neurosci. 3, 1176–188.PubMedGoogle Scholar
  23. 23.
    Dichter M. A. (1978) Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149, 279–293.PubMedCrossRefGoogle Scholar
  24. 24.
    Dotti C. G., Sullivan C. A., and Banker G. A. (1988) The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468.PubMedGoogle Scholar
  25. 25.
    Dubinsky J. M. (1987) Development of inhibitory synapses among striatal neurons in vitro. J. Neurosci. 9, 3955–3965.Google Scholar
  26. 26.
    Forsythe I. D. and Clements J. D. (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. 429, 1–16.PubMedGoogle Scholar
  27. 27.
    Frosch M., Barnes D., and Dichter M. (1983) Synapses between hippocampal neurons in culture. Soc. Neurosci. Abst. 9, 518.Google Scholar
  28. 28.
    Harrison N. L. (1990) On the presynaptic action of baclofen at inhibitory synapses between cultures rat hippocampal neurones. J. Physiol. 422, 433–446.PubMedGoogle Scholar
  29. 29.
    Horie S. and Kim S. U. (1984) Improved survival and differentiation of newborn and adult mouse neurons in F12-defined medium by fibronectin. Brain Res. 294, 178–181.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaufman L. and Barrett J. (1983) Serum factor supporting long-term survival of rat central neurons in culture. Science 220, 1394–1396.PubMedCrossRefGoogle Scholar
  31. 31.
    Kawaguchi Y. S. and Hama K. (1987) Two types of nonpyramidal cells in the rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res. 411, 190–195.PubMedCrossRefGoogle Scholar
  32. 32.
    Kay A. R. and Wong R. K. S. (1986) Isolation of neurons suitable for patch clamping from adult mammalian central nervous system. J. Neurosci. Methods 16, 227–238.PubMedCrossRefGoogle Scholar
  33. 33.
    Kriegstein A. and Dichter M. (1983) Morphological classification of rat cortical neurons in cell culture. J. Neurosci. 3, 1634–1647.PubMedGoogle Scholar
  34. 34.
    Lacaille J. C. and Schwartzkroin P. A. (1988a) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region I: Intracellular response characteristics, synaptic responses, and morphology. J. Neutvsd 8, 1400–1410.Google Scholar
  35. 35.
    Lacaille J. C. and Schwartzkroin P. A. (1988b) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region II: Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J. Neutvsd. 8, 1411–1424.Google Scholar
  36. 36.
    Legido A., Reichlin S., Dichter M., and Buchhalter J. R. (1990) Expression of somatostatin and GAB A immunoreactivity in cultures of rat hippocampus. Peptides 11, 103–109.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin D. P., Wallace T. L., and Johnson E. M. (1990) Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: Evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J. Neurosci. 10, 184–193.PubMedGoogle Scholar
  38. 38.
    Masuko S., Nakajima Y., Nakajima S., and Yamaguchi K. (1986) Noradrener-gic neurons from the locus ceruleus in dissociated cell culture: culture methods, morphology, and electrophysiology. J. Neurosd. 6, 3229–3241.Google Scholar
  39. 39.
    Mattson M. P., Dou P., and Kater S. B. (1988a) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosd. 8, 2087–2100.Google Scholar
  40. 40.
    Mattson M. P. and Kater S. B. (1988b) Isolated hippocampal neurons in cyropreserved long-term cultures: Development of neuroarchitechture and sensitivity to NMD A. Int. J. Dev. Neurosd. 6, 439–452.CrossRefGoogle Scholar
  41. 41.
    Mattson M. P., Murrain M., Guthrie P. B., and Kater S. B. (1989) Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitechture. J. Neurosci. 9, 3728–3733.PubMedGoogle Scholar
  42. 42.
    Mayer M. and Westbrook G. (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J. Physiol. 361, 65–90.PubMedGoogle Scholar
  43. 43.
    Mayer M. L., Vyklicky L., and Clements J. (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425–127.PubMedCrossRefGoogle Scholar
  44. 44.
    Meier E., Drejer J., and Schousboe A. (1984) GABA induces functionally active low-affinitive GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43, 1737–1744.PubMedCrossRefGoogle Scholar
  45. 45.
    Messer A., Snodgrass G. L., and Maskin P. (1984) Enhanced survival of cultured cerebellar Purkinje cells by plating on antibody to Thy-l. Cell. Mol. Neurobiol. 4, 285–290.PubMedCrossRefGoogle Scholar
  46. 46.
    Miller R. J. (1987) Multiple calcium channels and neuronal function. Srience 235, 46–52.CrossRefGoogle Scholar
  47. 47.
    Misgeld U. and Dietzel I. (1989) Synaptic potentials in the rat neostriatum in dissociated embryonic cell culture. Brain Res. 492, 149–157.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakayama T., Sugiyama H., and Furuya S. (1989) Basal lamina enhances hippocampal neurite outgrowth in vitro. Dev. Br. Res. 49, 145–149.CrossRefGoogle Scholar
  49. 49.
    Nelson P. G., Pun R. Y. K., and Westbrook G. L. (1986) Synaptic excitation in cultures of mouse spinal cord neurons: Receptor pharmacology and behavior of synaptic currents. J. Physiol. 372, 169–190.PubMedGoogle Scholar
  50. 50.
    Orr D. J. and Smith R. A. (1988) Neuronal maintenance and neurite extension of adult mouse neurones in nonneuronal cell-reduced cultures is dependent on substratum coating. J. Cell Sci. 91, 555–561.PubMedGoogle Scholar
  51. 51.
    Peacock J. H. (1979a) Electrophysiology of dissociated hippocmpal cultures from fetal mice. Brain Res. 169, 247–260.PubMedCrossRefGoogle Scholar
  52. 52.
    Peacock J. H., Rush D. F., and Mathers L. H. (1979b) Morphology of dissociated hippocampal cultures from fetal mice. Brain Res. 169, 231–246.PubMedCrossRefGoogle Scholar
  53. 53.
    Peacock J. H. and Walker C. R. (1983) Development of calcium action potentials in mouse hippocampal cell cultures. Dev. Brain Res. 8, 39–52.CrossRefGoogle Scholar
  54. 54.
    Peterson C., Neal J. H., and Cotman C. W. (1989) Development of N-methyl-D-aspartate excitotoxicity in cultured hippocampal neurons. Dev. Br. Res. 48, 187–195.CrossRefGoogle Scholar
  55. 55.
    Phillips J., Buchhalter J. R., and Winokour A. (1990) Neurotoxic effects of thyrotropin releasing hormone on fetal rat hippocampal neurons. Soc. Neurosci. Absts. 16, 518.Google Scholar
  56. 56.
    Rogawski M. A. (1986) Single voltage-dependent potassium channels in cultured rat hippocampal neurons. J. Neurophys. 56, 481–493.Google Scholar
  57. 57.
    Rosenberg P. A. and Aizenman E. (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci. Lett. 103, 162–168.PubMedCrossRefGoogle Scholar
  58. 58.
    Rothman S. M. (1983) Synaptic activity mediates death of hypoxic neurons. Science 220, 536–537.PubMedCrossRefGoogle Scholar
  59. 59.
    Rothman S. M. (1985a) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5, 1483–1489.PubMedGoogle Scholar
  60. 60.
    Rothman S. M. and Samaie M. (1985b) Physiology of excitatory synaptic transmission in cultures of dissociated rat hippocampus. J. Neurophys. 54, 701–713.Google Scholar
  61. 61.
    Rothman S. M., Thurston J. H., and Hauhart R. E. (1987) Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 22, 471–480.PubMedCrossRefGoogle Scholar
  62. 62.
    Sah P., Gibb A. J., and Gage P. W. (1988) Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus. J. Gen. Physiol. 92, 263–278.PubMedCrossRefGoogle Scholar
  63. 63.
    Schwartzkroin P. A. and Mathers L. H. (1978) Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res. 157, 1–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Segal M. (1983) Rat hippocampal neurons in culture: Responses to electrical and chemical stimuli. J. Neurophys. 50–56, 1249–1264.Google Scholar
  65. 65.
    Segal M. and Barker J. (1984) Rat hippocmpal neurons in culture: Potassium conductances. J. Neurophys. 51, 1409–1433.Google Scholar
  66. 66.
    Shahar A., de Vellis J., Vernadakis A., and Haber B. (eds.) (1989) A Dissection and Tissue Culture Manual of the Neruous System. Liss, New York.Google Scholar
  67. 67.
    Smith S. M., Zorec R., and McBurney R. N. (1989) Conductance states activated by glycine and GABA in rat cultured spinal neurones. J. Memb. Biol. 108, 45–52.CrossRefGoogle Scholar
  68. 68.
    Snodgrass S. R., White W. R., and Dichter M. (1980) Biochemical correlates of GABA function in rat cortical neurons in culture. Brain Res. 190, 123–138.PubMedCrossRefGoogle Scholar
  69. 69.
    Tang C.-M., Dichter M., and Morad M. (1989) Quisqualate activates a rapidly inactivating high-conductance ionic channel in hippocampal neurons. Science 243, 1474–1477.PubMedCrossRefGoogle Scholar
  70. 70.
    Tang C.-M., Dichter M., and Morad M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Nail. Acad. Set 87, 6445–6449.CrossRefGoogle Scholar
  71. 71.
    Trussell L. O. and Jackson M. B. (1987) Dependence of an adenosine-acti-vated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosd. 7, 3306–3316.Google Scholar
  72. 72.
    Wang H.-L., Bogen C., Reisine T., and Dichter M. (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc. Natl. Acad. Sd. 86, 9616–9620.CrossRefGoogle Scholar
  73. 73.
    Wang H.-L., Dichter M. and Reisine T. (1990) Lack of cross desensitization of somatostatin-14 and somatostatin-28 receptors coupled to potassium channels in rat neocortical neurons. Molec. Pharm. 38, 357–361.PubMedGoogle Scholar
  74. 74.
    Whately S. A., Hall C., and Lim L. (1981) Hypothalamic neurons in dissociated cell culture: The mechanism of increased survival times in the presence of nonneuronal cells. J. Neurochetn. 36, 2052–2056.CrossRefGoogle Scholar
  75. 75.
    Wilkinson M., Gibson C. J., Bressler B. K, and Inman D. R. (1974) Hypothalamic neurons in dissociated cell culture. Brain Res. 82, 129–138.PubMedCrossRefGoogle Scholar
  76. 76.
    Yaari Y., Hamon B., and Lux H. D. (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235, 680–682.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamamoto M., Steinbusch H. W. M., and Jessell T. M. (1981) Differentiated properties of identified serotonin neurons in dissociated cultures of embryonic rat brain stem. J. Cell. Biol. 91, 142–152.PubMedCrossRefGoogle Scholar
  78. 78.
    Yong V. W., Horie H., and Kim S. U. (1988) Comparison of six different substrata on the plating efficiency, differentiation, and survival of human dorsal root ganglion neurones in culture. Dev. Neurosd. 10, 222–230.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. Totowa, New Jersey 1992

Authors and Affiliations

  • Jeffrey R. Buchhalter
    • 1
  • Marc A. Dichter
    • 1
  1. 1.Division of NeurologyThe University of PennsylvaniaPhiladelphia

Personalised recommendations