Advertisement

Identification of Cell Types in Neural Cultures

  • Colin J. Barnstable
Part of the Neuromethods book series (NM, volume 23)

Abstract

Tissue culture provides an opportunity to study the functions of the nervous system under strictly controlled conditions. As amply documented in other chapters in this volume, the culture medium, the surface upon which the cultures are growing, and various cellular and soluble factors can all modulate the growth and behavior of neural cells. A major variable in these cultures, however, remains the heterogeneity of the tissue used for the culture. Without knowing the relative proportions of neurons and glia, or the relative proportions of different subclasses of neurons, it can be difficult to interpret experimental results. If two types of electrophysiological responses are found under different growth conditions, is it because cell properties have become altered, or because different cell types are now present? If the amount of a particular neurotransmitter is altered by the addition of a certain growth factor, is it because the factor affected the synthesis, storage, or release of the transmitter, or because the proportion of cells utilizing this transmitter has altered?

Keywords

Ganglion Cell Retinal Pigment Epithelial Cell Amacrine Cell Cell Surface Antigen Aldehyde Fixative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akagawa K. and Barnstable C. J. (1986) Identification and characterization of cell types in monolayer cultures of rat retina using monoclonal antibodies. Brain Res. 383, 110–120.PubMedCrossRefGoogle Scholar
  2. 2.
    Akagawa K. and Barnstable C. J. (1987a) Identification and characterization of cell types accumulating GABA in rat retinal cultures using cell type, specific monoclonal antibodies. Brain Res. 408, 154–162.PubMedCrossRefGoogle Scholar
  3. 3.
    Akagawa F. and Barnstable C. J. (1987b) Selective sorting out of glycine-accumulating cells in reaggregate cultures of rat retina Dev. Brain Res. 31, 124–128.CrossRefGoogle Scholar
  4. 4.
    Akagawa K., Hicks D., and Barnstable C. J. (1987) Histiotypic organization and cellular differentiation of rat retinal neurons maintained in reaggregate culture. Brain Res. 437, 298–308.PubMedCrossRefGoogle Scholar
  5. 5.
    Aramant R., Seiler M., Ehinger B. Bergstrom A., Adolph A. R., and Turner J. E. (1990) Neuronal markers in rat retinal grafts. Dev. Brain Res. 53, 47–61.CrossRefGoogle Scholar
  6. 6.
    Arimatsu Y., Naegele J. R., and Barnstable C. J. (1987) Molecular markers of neuronal subpopulations in layers 4,5 and 6 of cat primary visual cortex. J. Neurosci. 7, 1250–1263.PubMedGoogle Scholar
  7. 7.
    Bader C. R., MacLeish P.R., and Schwartz E. A. (1978) Responses to light of solitary rod photoreceptors isolated from tiger salamander retina. Proc. Natl. Acad. Sci. 75, 3507–3511.PubMedCrossRefGoogle Scholar
  8. 8.
    Barnstable C. J. (1980) Monoclonal antibodies which recognize different cell types in the rat retina Nature 286, 231–235.PubMedCrossRefGoogle Scholar
  9. 9.
    Barnstable C. J. (1982) Monoclonal antibodies—tools to dissect the nervous system. Immunol. Today 3, 157–159, 167, 168.CrossRefGoogle Scholar
  10. 10.
    Barnstable C. J. (1987) A molecular view of mammalian retinal development. Mol. Neurobiol. 1, 9–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Barnstable C. J. (1991) Molecular aspects of development of mammalian optic cup and formation of retinal cell types. Prog. Retina Res. 10, 69–88.CrossRefGoogle Scholar
  12. 12.
    Barnstable C. J. and Dräger U. C. (1984) Thy-1 antigen: A ganglion cell specific marker in rodent retina. Neuroscience 11, 847–855.PubMedCrossRefGoogle Scholar
  13. 13.
    Barnstable C. J., Hofstein R., and Akagawa K. (1985) A marker of early amacrine cell development in rat retina. Dev. Brain Res. 20, 286–290.CrossRefGoogle Scholar
  14. 14.
    Barres B. A., Silverstein B. E., Corey D. P., and Chun L. L. Y. (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803.PubMedCrossRefGoogle Scholar
  15. 15.
    Bartlett W. P. and Banker G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. J. Neurosci. 4, 1944–1953.PubMedGoogle Scholar
  16. 16.
    Baughman R. W. and Bader C. R. (1977) Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res. 138, 469–485.PubMedCrossRefGoogle Scholar
  17. 17.
    Blum A. S. and Barnstable C. J. (1987) O-acetylation of a cell surface carbohydrate creates iscrete molecular patterns during neural development. Proc. Natl. Acad. Sci. 84, 8716–8720.PubMedCrossRefGoogle Scholar
  18. 18.
    Burden S. J., Sargent P. B., and McMahan U. J. (1979) Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve J. Cell Biol. 82, 412–425.PubMedCrossRefGoogle Scholar
  19. 19.
    Cáceres A., Banker G. A., and Binder, L. (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosci. 6, 714–722.PubMedGoogle Scholar
  20. 20.
    Dimpfel W., Huang R. T. C., and Habermann E. (1977) Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin-neuronal marker. J. Neurochem. 29, 329–334.PubMedCrossRefGoogle Scholar
  21. 21.
    Dräger U. C. (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303, 169–172.PubMedCrossRefGoogle Scholar
  22. 22.
    Dräger U. C., Edwards D. L., and Kleinschmidt J. (1983) Neurofilaments contain a-melanocyte-stimulating hormone (a-MSH)-like immunoreactivity. Proc. Natl. Acad. Sci. 80, 6408–6412.PubMedCrossRefGoogle Scholar
  23. 23.
    Dräger U. C., Edwards D. L., and Barnstable C. J. (1984) Antibodies against filamentous components in discrete cell types of the mouse retina J. Neurosci. 4, 2025–2042.PubMedGoogle Scholar
  24. 24.
    Dreyer E. B., Leifer D., Levin L. A., and Lipton S. A. (1990) An endogenous glial receptor for Thy-1 and its role in retinal ganglion cell neurite outgrowth. Invest. Ophthaimol. Vis. Sci. (Suppl.) 31, 286.Google Scholar
  25. 25.
    Edelman G. M., Hoffman S., Chuong C.-M. Thiery J.-P., Brackenbury R., Gallin W. J., Grumet M., Greenberg M. E., Hemperly J. J., Cohen C., and Cunningham B. A. (1983) Structure and modulation of neural cell adhesion molecules and early and late embryogenesis. Cold Spring Harbor Symp. Quant Biol. 48, 515–526.PubMedCrossRefGoogle Scholar
  26. 26.
    Farb D. H., Berg D. K., and Fischbach G. D. (1979) Uptake and release of (3H) γ-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J. Cell Biol. 80, 651–661.PubMedCrossRefGoogle Scholar
  27. 27.
    Fields K. L., Brockes J. P., Mirsky R., and Wendon L. M. B. (1978) Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture. Cell 14, 43–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Furshpan E. J., MacLeish P. R., O’Lague P. H., and Potter D. D. (1976) Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. 73, 4225–4229.PubMedCrossRefGoogle Scholar
  29. 29.
    Giulian D. and Baker T. J. (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178.PubMedGoogle Scholar
  30. 30.
    Goldman J. E., Hirano M., Yu R. K., and Seyfried T. N. (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodemal cells J. Neuroimmunol. 7, 179–192.PubMedCrossRefGoogle Scholar
  31. 31.
    Goridis C., Deagostini-Bazin H., Hirn M., Hirsch M.-R., Rougon G., Sadoul R. Langley O. K., Gombos G., and Finne J. (1983) Neural surface antigens during nervous system development. Cold Spring Harbor Symp. Quant. Biol. 48, 527–537.PubMedCrossRefGoogle Scholar
  32. 32.
    Gozes I. and Barnstable C. J. (1982) Monoclonal antibodies that recognize discrete forms of tubulin. Proc. Natl. Acad. Sci. USA 79, 2579–2583.PubMedCrossRefGoogle Scholar
  33. 33.
    Hammang J. P., Baetge E. E., Behringer R. R., Brinster R. L., Palmiter R. D., and Messing A. (1990) Immortalized Retinal Neurons Derived from SV40 T-Antigen-Induced Tumors in Transgenic Mice. Neuron 4, 775–782.PubMedCrossRefGoogle Scholar
  34. 34.
    Harlow E. and Lane D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  35. 35.
    Hicks D. and Courtois Y. (1990) The growth and behaviour of rat retinal Müller cells In Vitro 1. An improved method for isolation and culture. Exp. Eye Res. 51, 119–129.PubMedCrossRefGoogle Scholar
  36. 36.
    Hicks D. and Barnstable C. J. (1987) Different monoclonal antibodies reveal different binding patterns on developing and adult retina. J. Histochem Cytochem. 35, 1317–1328.PubMedCrossRefGoogle Scholar
  37. 37.
    Hicks D., Sparrow J., and Barnstable, C. J. (1989) Immunoelectron microscopic examination of the surface distribution of opsin in the rat retinal photoreceptor cells. Exp. Eye Res. 49, 13–29.PubMedCrossRefGoogle Scholar
  38. 38.
    Hockfield S. and McKay R. D. G. (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5, 3310–3328.PubMedGoogle Scholar
  39. 39.
    Hume D. A., Perry V. H., and Gordon S. (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97, 253–257.PubMedCrossRefGoogle Scholar
  40. 40.
    Jessell T. M., Siegel R. E., and Fischbach G. D. (1979) Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc. Natl. Acad. Sci. 76, 5397–5401.PubMedCrossRefGoogle Scholar
  41. 41.
    Kosaka, T., Heizman C. W., and Barnstable, C. J. (1989) Monoclonal antdbody VC1.1 selectively stains a population GABAergic neurons containing a calcium binding protein parvalbumin in the rat cerebral cortex. Exp. Brain Res. 78, 43–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Kosaka T, Isogai K., Barnstable C. J., and Heizmann C. W. (1990) Monoclonal antibody HNK-1 selectively stains a population of GABAergic neurons containing a calcium-binding protein parvalbumin in the rat cerebral cortex. Exp. Brain Res. 82, 566–574.PubMedCrossRefGoogle Scholar
  43. 43.
    Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophase T4. Nature 111, 680–685.CrossRefGoogle Scholar
  44. 44.
    Landis S. C. (1980) Developmental changes in the neurotransmitter properties of dissociated sympathetic neurons: A cytochemical study of the effects of medium. Dev. Biol. 77, 349–361.PubMedCrossRefGoogle Scholar
  45. 45.
    Leclerc N., Gravel G., and Hawkes R. (1988) Development of parasagittal zonation in the rat cerebellar cortex: MabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of purkinje cells. J. of Comp. Neuro. 273, 399–420.CrossRefGoogle Scholar
  46. 46.
    Leifer D., Lipton S. A., Barnstable C. J., and Masland R. H. (1984) Monoclonal antibody to Thy-1 enhances regeneration of processes by rat retinal ganglion cells in culture. Science 224, 303–306.PubMedCrossRefGoogle Scholar
  47. 47.
    Lindvall O., Bjorklund A., Hokfelt T, and Ljungdahl, A. (1973) Application of the glyoxylic acid method to Vibratome sections for improved visualization of central catecholamine neurons. Histochemie 35, 31–38.PubMedCrossRefGoogle Scholar
  48. 48.
    MacLeish P. M., Barnstable C. J., and Townes-Anderson, E. (1983) Use of a monoclonal antibody as a substrate for mature neurons in vitro. Proc. Natl. Acad. Sci. USA 80, 7014–7018.PubMedCrossRefGoogle Scholar
  49. 49.
    Messer A., Snodgrass G. L., and Maskin, P. (1984) Enhanced survival of cultured cerebellar Purkinje cells by plating on antibody to Thy-1. Cell. Molec. Neurobiol. 4, 285–290.PubMedCrossRefGoogle Scholar
  50. 50.
    Naegele J. R. and Barnstable C. J. (1991) A carbohydrate epitope defined by monoclonal antibody VC1.1 is found on N-CAM and other cell adhesion molecules. Brain Res. 559, 118–129.PubMedCrossRefGoogle Scholar
  51. 51.
    Naegele J. R., Arimatsu Y., Schwartz P., and Barnstable, G. J. (1988) Selective staining of a subset of GABAergic neurons in cat visual cortex by monoclonal antibody VC1.1. J. Neurosci. 8, 79–89.PubMedGoogle Scholar
  52. 52.
    Neill J. M. and Barnstable C. J. (1990) Differentiation and dedifferentiation of rat retinal pigment epithelial cells. Expression of RET-RE2, and RPE antigen, and N-CAM durng development and in tissue culture. Exp. Eye Res. 51, 573–583.PubMedCrossRefGoogle Scholar
  53. 53.
    Patterson P. H. (1978) Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1, 1–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Patterson P. H. and Chun L. L. Y. (1977) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympthetic neurons. I. Effects of conditioned medium. Dev. Biol. 56, 263–280.PubMedCrossRefGoogle Scholar
  55. 55.
    Ranscht B., Clapshaw P. A., Price J., Nobel M., and Siefert, W. (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. 79, 2709–2713.PubMedCrossRefGoogle Scholar
  56. 56.
    Sarthy P. V. (1985) Establishment of Müller cell cultures from adult rat retina. Brain Res. 337, 138–141.PubMedCrossRefGoogle Scholar
  57. 57.
    Sommer I. and Schachner M. (1981) Monoclonal antibodies (01 to 04) for oligodendrocyte cell surfaces; an immunological study in the central nervous system. Dev. Biol. 83, 311–327.PubMedCrossRefGoogle Scholar
  58. 58.
    Sparrow J. R., Hicks D., and Barnstable C. J. (1990) Cell commitment and differentiation in explants of embryonic rat retina. Comparison to the developmental potential of dissociated retina. Dev. Brain Res. 51, 69–84.CrossRefGoogle Scholar
  59. 59.
    Towbin H., Schoenenberger C, Ball R., Braun D. G., and Rosenfelder G. (1984) Glycosphingolipid-blotting: An immunological detection procedure after separation by thin layer chromatography. J. Immun. Methods. 72, 471–479.CrossRefGoogle Scholar
  60. 60.
    Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76, 1318–1322.CrossRefGoogle Scholar
  61. 61.
    Townes-Anderson E., MacLeish P.R, and Raviola E. (1985) Rod cells dissociated from mature Salamander retina: Ultrastructure and uptake of horseradish peroxidase. J. Cell Biol. 100, 175–188.PubMedCrossRefGoogle Scholar
  62. 62.
    Willinger M. and Schachner M. (1980) GM1 Ganglioside as a marker for neuronal differentiation in mouse cerebellum. Dev. Biol. 74, 101–117.PubMedCrossRefGoogle Scholar
  63. 63.
    Zipser B. and McKay R. (1981) Monoclonal antibodies distinguish identifiable neurones in the leech. Nature 289, 549–554.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. Totowa, New Jersey 1992

Authors and Affiliations

  • Colin J. Barnstable
    • 1
  1. 1.Department of Ophthalmology and Visual ScienceYale UniversityNew Haven

Personalised recommendations