Inositol Triphosphate Receptors and Intracellular Calcium

Experimental Approaches
  • Colin W. Taylor
  • Jennifer M. Bond
  • David L. Nunn
  • Katherine A. Oldershaw
Part of the Neuromethods book series (NM, volume 20)


Inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) was first shown to stimulate mobilization of intracellular Ca2+ from permeabilized pancreatic acinar cells (Streb et al., 1983) and has since become recognized as an intracellular messenger formed after receptor activation and then responsible for mobilizing Ca2+ from the intracellular stores of many different cell types. The interactions between most receptors and the phosphoinositidase C (PIC) that catalyzes formation of Ins(1,4,5)P 3 and 1,2-diacylglycerol (DG) have much in common with the more completely understood interactions between receptors and adenylyl cyclase (Gilman, 1987; Taylor, 1990b; Fig. 1). In both cases, agonist-occupied receptors catalyze activation of a specific guanine nucleotide dependent regulatory protein(s) (G protein) by allowing it to lose its tightly bound GDP and replace it with GTP. The active GTP-bound G protein, which has yet to be identified for the phosphoinositide pathway, then regulates the activity of an intracellular effector, for example, adenylyl cyclase or PIC. Stimulation of the latter causes increased hydrolysis of the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdInsP 2), and the formation of Ins(1,4,5)P 3 and DG.
Fig. 1.

Receptor-regulated formation of Ins(1,4,5)P 3 The complex of receptor (R) and agonist (A) catalyzes the exchange of GDP for GTP on an unidentified G protein. Binding of GTP to the α subunit of the oligomeric G protein probably promotes its dissociation into α-GTP and βγ subunits. The former probably directly stimulates PIC activity until its intrinsic GTPase activity hydrolyzes the bound GTP, inactivating it and allowing it to reassociate with the βγ complex to form the complete G protein. Active PIC catalyzes hydrolysis of PtdInsP2to Ins(1,4,5)P 3 and diacyglycerol. The latter can activate certain proteins kinase C before its metabolism by a specific kinase to phosphatidic acid or by specific lipases that remove the fatty acid residues. Ins(1,4,5)P 3 enters the cytosol and regulates Ca2+ mobilization from intracellular stores before it is metabolized by a specific 5-phosphatase or 3-kinase. The Ins(l,4)P 2 and Ins(1,3,4,5)P 4 formed are the first substrates of a complex series of phosphorylation and dephosphorylation reactions (not shown) that can eventually lead to inositol that can be recycled to the membrane phosphoinositides.


Sarcoplasmic Reticulum Ryanodine Receptor Intracellular Store Inositol Phosphate Pancreatic Acinar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahnert-Hilger G. and Gratzl M. (1988) Controlled manipulation of the cell interior by pore-forming proteins. Trends Pharmacol. Sci. 9, 195–197.PubMedGoogle Scholar
  2. Adunyah S. E. and Dean W. L. (1986) Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate-induced Ca2+ release from human platelet membranes. J. Biol. Chem. 261, 13,071–13,075.PubMedGoogle Scholar
  3. Ammann D. (1986) Ion-Selective Electrodes Principles Design and Application, Springer-Verlag, Heidelberg.Google Scholar
  4. Atkinson T., Hammond P. M, Hartwell R. D., Hughes P., Scawen M. D., Sherwood R. F., Smau D. A. P., Bruton C. J., Harvey M. J., and Lowe C. R. (1981) Triazine dye affinity chromatography. Biochem. Soc. Trans. 9, 290–293.PubMedGoogle Scholar
  5. Berridge M. J. (1988) Inositol trisphosphate-induced membrane potential osciuations in Xenopus oocytes. J Physiol. 403, 589–599.PubMedGoogle Scholar
  6. Berridge M. J. (1989) Inositol trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. Proc. R. Soc. Land. Biol. 238, 235–243.Google Scholar
  7. Berridge M. J. and Galione A. (1988) CytosoIic calcium oscillators. FASEB J. 2, 3074–3082.PubMedGoogle Scholar
  8. Berridge M. J. and Irvine R. P. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedGoogle Scholar
  9. Berridge M. J. and Irvine R. P. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205.PubMedGoogle Scholar
  10. Berridge M. J. and Michell R. H. (1988) Inositol Lipids and Transmembrane Signalling (The Royal Society, London), p. 200.Google Scholar
  11. Berridge M. J., Cobbold P. H., and Cuthbertson K. S. R. (1988) Spatial and temporal aspects of cell signalling. Philos. Trans. R. Soc. Lond. Biol. 320, 325–343.PubMedGoogle Scholar
  12. Bootman M. D., Pay G. F, Rick C. E., and Tones M. A. (1990) Two sulphonated dye compounds which compete for inositol 1,4,5-trisphosphate binding to rat liver microsomes: effects on S’phosphatase activity. Biochem. Biophys. Res. Commun. 166, 1334–1339.PubMedGoogle Scholar
  13. Boyan B. D. and Clement-Cormier Y. (1984) Organic solvent extraction of membrane proteins, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Liss, NY, pp. 47–64.Google Scholar
  14. Burgess G. M, Irvine R. F., Berridge M. J., McKinney J. S., and Putney J. W. (1984) Actions of inositol phosphates on Ca2+ pools in guinea-pig hepa-tocytes. Biochem. J. 224, 741–746.PubMedGoogle Scholar
  15. Burgess G. M., McKinney J. S., Pabiato A., Leslie B. A., and Putney J. W. (1983) Calcium pools in saponin-permeabilized guinea-pig hepatocytes. J. Biol. Chem. 258, 15,336–15,345.PubMedGoogle Scholar
  16. Burgoyne R. D, Cheek T. R, Morgan A., O’Sullivan A. J., Moreton R. B., Berridge M.J., Mata A. M., Colyer J., Lee A. G., and East J. M. (1989) Distribution of two distinct Car2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature 342, 72–74.PubMedGoogle Scholar
  17. Campbell A. K. (1983) Intracellular Calcium. Its Universal Role as Regulator. (John Wiley, Colchester).Google Scholar
  18. Caswell A. H. (1979) Methods of measuring intracellular calcium. Int. Rev. Cytol. 56, 145–165.PubMedGoogle Scholar
  19. Chadwick C. C., Saito A., and Fleischer S. (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. USA 87, 2132–2136.PubMedGoogle Scholar
  20. Challis R. A. J., Chilvers E. R., Willcocks A. L., and Nahorski S. R. (1990) Heterogeneity of [3H]inositol 1,4,5-trisphosphate binding sites in adrenal cortical membranes. Characterization and validation of a radioreceptor assay. Biochem. J. 265, 421–427.Google Scholar
  21. Champeil P., Combettes L., Berthon B., Doucet E., Orlowski S., and Claret M. (1989) Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J. Biol. Chem. 264, 17,665–17,673.PubMedGoogle Scholar
  22. Cheek T. R. (1989) Spatial aspects of calcium signalling. J. Cell Sci. 93, 211–216.PubMedGoogle Scholar
  23. Cheuh S,-H. and Gill D. L. (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanism. J. Biol. Chem. 261, 13,883–13,886.Google Scholar
  24. Chilvers E. R., Challiss R. A. J., Willcocks A. L., Potter B. V. L., Barnes P. J., and Nahorski S. R. (1990) Characterization of stereospecific binding sites for inositol 1,4,5-trisphosphate in airway smooth muscle. Br. J. Pharmacol. 99, 297–302.PubMedGoogle Scholar
  25. Cobbold P. H. and Rink T. J. (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem. J. 248, 313–328.PubMedGoogle Scholar
  26. Cobbold P., Dixon J., Sanchez-Bueno A., Woods N., Daly M., and Cuthbertson K. (1990) Receptor control of calcium transients, in Trans-membrane Signalling. Intracellular Messengers and Implications for Drug Development (Nahorski S. R., ed.), John Wiley, Chichester, UK, pp. 185–206.Google Scholar
  27. Cockcroft S. and Gomperts B. D. (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279, 541,542.Google Scholar
  28. Cotton P. A., Day V. W. Hazen E. E, and Larsen S. (1973) Structure of methyl-guanidium dihydrogenorthophosphate. A model compound for argi-nine-phosphate hydrogen bonding. J, Am. Chem. Soc. 95, 4834–4840.Google Scholar
  29. Danoff S. K., Supattapone S., and Snyder S. H. (1988) Characterization of membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254, 701–705.PubMedGoogle Scholar
  30. Dawson A. P. (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from liver microsomes. FEBS Lett. 185, 147–150PubMedGoogle Scholar
  31. Dawson A. P. and Irvine R. P. (1984) Inositol(l,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biohem. Biophys. Res. Commun. 120, 858–864Google Scholar
  32. Downes C. P. and Michell R. H. (1985) Inositol phospholipid breakdown as a receptor-controlled generator of second messengers, in Molecular Mechanisms of Transmembrane Signalling (Cohen P. and Houslay M. D., eds.), Elsevier Science, Amsterdam, pp. 3–56.Google Scholar
  33. Downes C. P., Berrie C. P., Hawkins P. T, Stephens L., Boyer J. L., and Harden T. K. (1988) Receptor and G-protein-dependent regulation of turkey erythrocyte phosphoinositidase C. Philos. Trans. R. Soc. Land. Biol. 320, 267–280.Google Scholar
  34. Ehrlich B. E. and Watras J. (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336, 583–586PubMedGoogle Scholar
  35. El-Rafei M. F. (1984) Assay of soluble receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Alan R. Liss, NY, pp. 99–108.Google Scholar
  36. Ferris C. D., Huganir R. L., Supattapone S., and Snyder S. H. (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342, 87–89.PubMedGoogle Scholar
  37. Föhr K. J., Scott J., Ahnert-Hilger G., and Gratzl M. (1989) Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem. J. 262, 83–89.PubMedGoogle Scholar
  38. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N, and Mikoshiba K. (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38.PubMedGoogle Scholar
  39. Gill D. L. (1989) Receptor kinships revealed. Nature 342, 16–18.PubMedGoogle Scholar
  40. Gilman A. G. (1987) G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.PubMedGoogle Scholar
  41. Glauert A. M, Dingle J. T., and Lucy J. A. (1962) Action of saponin on biological cell membranes, Nature 196, 952–955.PubMedGoogle Scholar
  42. Gogelein H. and Huby A. (1984) Interactions of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim. Biophys. Acta 773, 32–38.PubMedGoogle Scholar
  43. Goldbeter A., DuPont G., and Berridge M. J. (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 1461–1465.PubMedGoogle Scholar
  44. Guillemette G. and Segui J. A. (1988) Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol. Endocrinol. 2, 1249–1255PubMedGoogle Scholar
  45. Guillemette G, Balla T., Baukal A. J. and Catt K. J. (1988) Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in hepatic plasma membrane fractions. J. Biol. Chem. 263, 4541–4548.PubMedGoogle Scholar
  46. Guillemette G., Favreau I., Lamontagne S., and Boulay G. (1990) 2,3-diphos-phoglycerate is a nonselective inhibitor of inositol 1,4,5 trisphosphate action and metabolism. Eur. J. Pharmacol. 188, 251–260.PubMedGoogle Scholar
  47. Henne V., Mayr G. W, Grabowski B., Koppitz B., and Söling H.-D. (1988) Semisynthetic derivatives of inositol 1,4,5-trisphosphate substituted at the 1-phosphate group. Eur. J. Biochem. 174, 95–101.PubMedGoogle Scholar
  48. Hirata M., Watanabe Y., Ishimatsu T., Yanaga P., Koga T., and Ozaki S. (1990) Inositol 1,4,5-trisisphosphate affinity chromatography. Biochem. Biophys. Res. Commun. 168, 379–386.PubMedGoogle Scholar
  49. Hirata M., Watanabe Y., Ishimatsu T., Ikebe T., Kimura Y., Yamaguchi K., Ozaki S., and Koga T. (1989) Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase, and the release of Ca2+]. J. Biol. Chem. 264, 20,303–20,308.PubMedGoogle Scholar
  50. Hjelmeland L. M. and Chrambrach A. (1984) Solubilization of functional membrane bound receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C, eds.), Alan R. Liss, NY, pp. 35–46.Google Scholar
  51. Hodgson M. E. and Shears S. B. (1990) Rat liver contains a potent endogenous inhibitor of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase. Biochem. J. 267, 831–834.PubMedGoogle Scholar
  52. Horne W. A., Weiland G. A., Oswald R. E., and Cerione R. A. (1986) Rapid incorporation of the solubilized dihydropyridine receptor into phos-pholipid vesicles. Biochim. Biophys. Acta 863, 205–212.PubMedGoogle Scholar
  53. Horstman D. A., Takemura H., and Putney J. W. (1988) Formation and metabolism of [3H]inositol phosphates in AR42J pancreatoma cells. J. Biol. Chem. 263, 15,297–l5,303.PubMedGoogle Scholar
  54. Hughes A. R, Takemura H., and Putney J. W. (1988) Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. J. Biol. Chem. 263, 10,314–10,319.PubMedGoogle Scholar
  55. Irvine R. F. (1989) Functions of inositol phosphates, in Inositol Lipids in Cell Signalling (Michell R. H., Drummond A. H., and Downes C. P., eds.), Academic, London, pp. 135–161.Google Scholar
  56. Irvine R. F. (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 263, 5–9.PubMedGoogle Scholar
  57. Irvine R. F. and Moor R. M. (1986) Micro-injection of inositol 1,3,4,5-tetra-kisphosphate activates sea urchin eggs by a mechanism dependent on extrernal Ca2+. Biochem. J. 240, 917–920.PubMedGoogle Scholar
  58. Jacob R. (1990) Calcium oscillations in electrically nonexcitable cells. Biochim. Biophys. Acta 1052, 427–438.PubMedGoogle Scholar
  59. Jacob R., Merritt J. E, Hallam T. J., and Rink T. J. (1988) Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335, 40–45.PubMedGoogle Scholar
  60. Jean T. and Klee C. B. (1986) Calcium modulation of inositol 1,4,5-trisphos-phate-induced calcium release from neuroblastoma x glioma hybrid (NGlOS-15) microsomes. J Biol. Chem. 261, 16,414–16,420.PubMedGoogle Scholar
  61. Joseph S. K. and Williamson J. R. (1986) Characteristics of inositol trisphos-phate-mediated Ca2+ release from permeabilized hepatocytes. J. Biol. Chem. 261, 14,658–14,664.PubMedGoogle Scholar
  62. Joseph S. K. and Williamson J. R. (1989) Inositol polyphosphates and intra-cellular calcium release. Arch. Biochem. Biophys. 273, 1–15.PubMedGoogle Scholar
  63. Joseph S. K., Rice H. L, and Williamson J. R. (1989) The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J 258, 261–265.PubMedGoogle Scholar
  64. Joseph S. K, Thomas A. P., Williams R. J., Irvine R. F., and Williamson J. R. (1984) myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J. Biol. Chem. 259, 3077–3081.PubMedGoogle Scholar
  65. Kass G. E. N, Duddy S. K., Moore G. A., and Orrenius S. (1989) 2.5-Di(tert-butyl)l,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J Biol. Chem. 264, 15,192–15,198.PubMedGoogle Scholar
  66. Knight D. E. (1981) Rendering cells permeable by exposure to electric fields, in Techniques in Cellular Physiology P113 Elsevier/North Holland Seientific, Amsterdam, pp. 1–20.Google Scholar
  67. Kobayashi S., Kitazawa T, Somlyo A. V, and Somlyo, A. P. (1989) Cytosolic heparin inhibits muscarinic and a-adrenergic Ca2+ release in smooth muscle. J. Biol. Chem. 264, 17,997–18,004.PubMedGoogle Scholar
  68. Kuno M. and Gardner P. (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326, 301–304.PubMedGoogle Scholar
  69. Lai P. A., Erickson H. P., Rousseau E., Liu Q.-Y., and Meissner G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–319.PubMedGoogle Scholar
  70. Lassalles A. J. P. and Kado R. T. (1990) Opening of Ca2+ channels in isolated red beet root vacuole by inositol 1,4,5-trisphosphate. Nature 343, 567–570.Google Scholar
  71. McIntosh R. P. and McIntosh J. E. A. (1990) Metabolism of the biologically active inositol phosphates Ins(1,4,5)P 3 and Ins(1,3,4,5)P 4 by ovarian follicles of Xenopus laevis. Bicchem. J. 268, 141–145.Google Scholar
  72. Maeda N., Kawasaki T., Nakade S, Yokota N. Taguchi T., Kasai M., and Mikoshiba K. (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266, 1109–1116.PubMedGoogle Scholar
  73. Maeda N., Niinobe M., and Mikoshiba K. (1990) A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP 3) receptor protein. Purification and characterisation of InsP3 receptor. EMBO J. 9, 61–68.PubMedGoogle Scholar
  74. Maeda N., Niinobe M, Inoue Y., and Mikoshiba K. (1989) Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse. Dev. Biol. 133, 67–76.PubMedGoogle Scholar
  75. Malgoroli A., Pesce R., and Meldolesi J. (1990) Spontaneous [Ca2+] fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine-and ryanodine-sensitive intracellular Ca2+ store. J. Biol. Chem. 265, 3005–3008.Google Scholar
  76. Marcotte G. V., Millard P. J., and Fewtrell C. (1990) Release of calcium from intracellular stores in rat basophilic leukemia cells monitored with the fluorescent probe chlortetracycline. J. Cell Physiol. 142, 78–88.PubMedGoogle Scholar
  77. Matsumoto T., Kanaide H., Shogakiuchi Y., and Nakamura M. (1990) Characteristics of the histamine-sensitive calcium stores of vascular smooth muscle. Comparison with norepinephrine-or caffeine-sensitive stores. J. Biol. Chem. 265, 5610–5616.PubMedGoogle Scholar
  78. Meldolesi J., Madeddu L., and Pozzan T. (1990) Intracellular Ca2+ storage organelles in non muscle cells: Heterogeneity and functional assignment, Biochim. Biophys. Acta 1055, 130–140.PubMedGoogle Scholar
  79. Merritt J. E. and Rink T. J. (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J. Biol. Chem. 262, 17,362–17,369.PubMedGoogle Scholar
  80. Merritt J, E, McCarthy S. A., Davies M. P. A., and Moores K. E. (1990) Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils: Loading cells with the dye; calibration of traces; measurements in the presence of plasma; buffering of cytosolic Ca2+. Biochem. J 269, 513–519.PubMedGoogle Scholar
  81. Merritt J. E, Taylor C. W, Rubin R. P., and Putney J. W. (1986) Evidence suggesting that a novel guanine nucleotide-dependent regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 232, 435–438.Google Scholar
  82. Meyer T. and Stryer L. (1988) Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA 85, 5051–5055.PubMedGoogle Scholar
  83. Meyer T., Holowka D., and Stryer L. (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-tisphosphate. Science 240, 653–656.PubMedGoogle Scholar
  84. Meyer T., Wensel T., and Stryer L. (1990) Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37.PubMedGoogle Scholar
  85. Michell R. H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys, Acta 415, 81–147.Google Scholar
  86. Michell R. H., Drummond A. H., and Downes C. P. (1989) Inositol Lipids in Cell Signalling Academic, London, pp. 534.Google Scholar
  87. Mignery G. A., Südhof T, G, Takei K., and Camilli P. D. (1989) Putative receptor for inositol 1,4,,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195.PubMedGoogle Scholar
  88. Miledi R. and Parker I. (1989) Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium. J. Physiol. 415, 189–210.PubMedGoogle Scholar
  89. Morris A. P., Gallacher D. V., Irvine R. F., and Petersen O. H. (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+channels. Nature 330, 653–655.PubMedGoogle Scholar
  90. Muallem S, Pandol S. J., and Beeker T. G. (1989) Hormone-evoked calcium release is a quantal process. J. Biol. Chem. 264, 205–212.PubMedGoogle Scholar
  91. Muallem S, Schoeffield M, Pandol S., and Sachs G. (1985) Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 82, 4433–4437.PubMedGoogle Scholar
  92. Mullaney J. M., Yu M., Ghosh T. K., and Gill D. L. (1988) Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc. Natl. Acad. Sci. USA 85, 2499–2503.PubMedGoogle Scholar
  93. Munson P. J. and Rodbard D. (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239.PubMedGoogle Scholar
  94. Nahorski S. R. and Potter B. V. L. (1989) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139–144.PubMedGoogle Scholar
  95. Nishizuka Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661–665.PubMedGoogle Scholar
  96. Norman A. W., Demel R. A., DeKruyff B., Geurts Van Kessel W. S. M., and Van Deenen L. L. M (1972) Studies on the biological properties of polyene antibiotics: Comparison of other polyenes with filipin in their ability to interact specifically with sterol. Biochim. Biophys. Acta Öbd290, 1–14.Google Scholar
  97. Nunn D. L. and Taylor C. W. (1990) Liver inositol 1,4,5-trisphosphate-bind-ing sites are the calcium-mobilizing receptors. Biochem. J. (in press).Google Scholar
  98. Nunn D. L., Potter B. V. L., and Taylor C. W. (1990) Molecular target size of inositol trisphosphate receptors in cerebellum and liver. Biochem. J. 266, 189–194.Google Scholar
  99. Ogden D. C., Capiod T., Walker J. W., and Trentham D. R. (1990) Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J. Physiol. 422, 585–602.PubMedGoogle Scholar
  100. Oldershaw K. A. and Taylor C. W. (1990) 2,5-Di(tert-butyl)-1,4-benzo-hydroquione mobilizes inositol 1,4,5-trisphosphate-sensitive and insensitive Ca2+ stores. Febs Lett. 274, 214–216.PubMedGoogle Scholar
  101. O’Rourke P. and Feinstein B. (1990) The inositol 1,4,5-trisphosphate receptor binding sites of platelet membranes. Biochem.J. 267, 297–302.Google Scholar
  102. O’Sullivan A. J., Cheek T. R., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 8, 401–411.Google Scholar
  103. Palade P. (1987) Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. J. Biol. Chem. 262, 6135–6141.PubMedGoogle Scholar
  104. Payne R. and Fein A. (1987) Inositol 1,4,5-trisphosphate releases calcium from specialized sites within Limulus photoreceptors. J. Cell Biol. 104, 933–937.PubMedGoogle Scholar
  105. Polokoff M. A., Bencen G. H, Vacca J. P., de Solms S. J., Young S. D., and Huff J. R. (1988) Metabolism of synthetic inositol trisphosphate analogs. J. Biol. Chem. 263, 11,922–11,927.PubMedGoogle Scholar
  106. Prentki M., Wollheim C. B., and Lew P. D. (1984) Ca2+ homeostasis in permeablized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259, 13,777–13,782.PubMedGoogle Scholar
  107. Putney J. W. (1986a) Receptor Biochemistry and Methodology vol. 7: Phosphoinositides and Receptor Mechanisms. Alan R. Liss, NY.Google Scholar
  108. Putney J. W. (1986b) A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12.PubMedGoogle Scholar
  109. Raess B. U., Record D. M, and Tunnicliff G. (1985) Interaction of phenylgly-oxal with the human erythrocyte (Ca2+ + Me)-ATPase. Mol. Pharmacol. 27, 444–450.PubMedGoogle Scholar
  110. Riordan F. (1979) Arginyl residues and anion binding sites in proteins. Mol. Cell. Biochem. 26, 71–92.PubMedGoogle Scholar
  111. Rooney T. A., Sass E. J., and Thomas A. P. (1990) Agonist-induced cytosolic calcium oscillations originating from a specific locus in single hepatocytes. J. Biol. Chem. 265, 10,792–10,796.PubMedGoogle Scholar
  112. Ross C. A., Meldolesi J., Milner T. A., Satah T., Supattapone S., and Snyder S. H. (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339, 468–470.PubMedGoogle Scholar
  113. Rossier M. F., Bird G. St. J., and Putney J. W. (1991) Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Biochem. J. 274, 643–650.PubMedGoogle Scholar
  114. Rozengurt E. and Heppel L. A. (1975) A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem. Biophys Res.Commun. 67, 1581–1588.PubMedGoogle Scholar
  115. Shah J. and Pant H. C. (1988) Potassium channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fraction isolated from rat brain. Bioch. J. 250, 617–620.Google Scholar
  116. Shears S. B. (1989) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313–324PubMedGoogle Scholar
  117. Smith J. B., Smith L., and Higgins B. L. (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J.Biol. Chem. 260, 14,413–14,416.PubMedGoogle Scholar
  118. Somlyo A. P., Bond M., and Somlyo A. V. (1985) Calcium content of mitochondria and endoplasmic reticulum in liver rapidly frozen in vivo. Nature 314, 622–625.PubMedGoogle Scholar
  119. Spat A., Bradford P. G, McKinney J. S., Rubin R. P., and Putney J. W. (1986) A saturable receptor for 32P-inositoE1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319, 514–516.PubMedGoogle Scholar
  120. Streb H. and Schulz I. (1983) Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245, G347–G357.PubMedGoogle Scholar
  121. Streb H., Irvine R. P., Berridge M. J., and Schulz I. (1983) Release of calcium from nonmitochondrial stores in pancreatic acinar cells by inositol-1,4,5trisphosphate. Nature 306, 67–69.PubMedGoogle Scholar
  122. Streb H., Bayerdorffer E, Haase W., Irvine R. P., and Schulz I. (1984) Effect of inositol-1,4,5trisphosphate on isolated subcellular fractions of rat pancreas. J. Membr. Biol. 81, 241–253.PubMedGoogle Scholar
  123. Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., and Snyder S. H. (1988a) Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Nutl. Acad. Sci. USA 85, 8747–8750.Google Scholar
  124. Supattapone S., Worley P. P., Baraban J. M., and Snyder S. H. (1988b) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530–1534.PubMedGoogle Scholar
  125. Takemura H. and Putney J. W. (1989) Capacitative calcium entry in parotid acinar cells. Biochem. J. 258, 409–412.PubMedGoogle Scholar
  126. Taylor C. W. (1990a) Receptor-regulated Ca2+ entry: Secret pathway or secret messenger. Trends Pharmacol. Sci. 11, 269–271.PubMedGoogle Scholar
  127. Taylor C. W. (1990b) The role of G proteins in transmembrane signalling. Biochem. J. 272, 1–13.PubMedGoogle Scholar
  128. Taylor C. W. and Merritt J. E. (1986) Receptor coupling to polyphosphoin-ositide turnover: a parallel with the adenylate cyclase system. Trends Pharmacol. Sci. 7, 238–242.Google Scholar
  129. Taylor C. W. and Potter B. V. L. (1990) The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ pools depends on inositol trisphosphate concentration. Biochem. J. 266, 189–194.PubMedGoogle Scholar
  130. Taylor C. W. and Putney J. W. (1985) Size of the inositol trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem. J. 232, 435–438.PubMedGoogle Scholar
  131. Taylor C. W., Berridge M. J., Cooke A. M, and Potter B. V. L. (1989) Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. Biochem. J. 259, 645–650.PubMedGoogle Scholar
  132. Thastrup O., Cullen P. J., DrØbak B. K, Hartley M. R., and Dawson A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. USA 87, 2466–2470.PubMedGoogle Scholar
  133. Thelestam M. and Mollby R. (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects on human fibroblasts. Biochim. Biophys. Acta 557, 156–169.PubMedGoogle Scholar
  134. Thevenod R., Dehlinger-Kremer M., Kemmer T. P., Christian A.-L., Potter B. V. L, and Schulz I. (1989) Characterization of inositol 1,4,5-trisphos-phate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J. Membr. Biol. 109, 173–186.PubMedGoogle Scholar
  135. Thomas M. V. (1982) Techniques in Calcium Research. Academic, London, p. 214.Google Scholar
  136. Thompson S. T., Cass K. H, and Stellwagen E. (1975) Blue dextran-Sepharose: An affinity column for the dinucleotide fold in proteins. Proc. Natl. Acad. Sci. USA 72, 669–672.PubMedGoogle Scholar
  137. Tones M. A., Bootman M. D., Higgins B. P., Lane D. A., Pay G. F, and Lindahi U. (1989) The effect of heparin on the inositol 1,4,5 trisphosphate receptor in rat liver microsomes: Dependence on sulphate content and chain length. FEBS Lett. 252, 105–108.PubMedGoogle Scholar
  138. Tsien R. Y. (1989) Fluorescent probes of cell signaling. Annu. Ren. Neurosci. 12, 227–253.Google Scholar
  139. Vilven J. and Coronado R. (1988) Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336, 587–589.PubMedGoogle Scholar
  140. Volpe P., Krause K.-H., Hashimoto S., Zorzato F, Pozzan T., Meldolesi J., and Lew D. P. (1988) “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ stores of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85, 1091–1095.PubMedGoogle Scholar
  141. Wakui M., Potter B. V. L., and Petersen O. H. (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339, 317–320.PubMedGoogle Scholar
  142. Willems P. H. G. M., DeJong M. D., DePont J. J. H. H. M., and van OS C. H. (1990) Ca2+-sensitivity of inositol 1,4,5-trisphosphate-mediated Ca2+ release in permeabilized pancreatic acinar cells. Biochem. J. 265, 681–687.PubMedGoogle Scholar
  143. Woods N. M., Cuthbertson K. S. R., and Cobbold P. H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepa-tocytes. Nature 319, 600–602.PubMedGoogle Scholar
  144. Worley P. P., Baraban J. M, Supattapone S., Wilson V. S., and Snyder S. H. (1987) Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262, 12,132–12,136.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1992

Authors and Affiliations

  • Colin W. Taylor
    • 1
  • Jennifer M. Bond
    • 1
  • David L. Nunn
    • 1
  • Katherine A. Oldershaw
    • 1
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations