Advertisement

Selectable Markers for Eukaryotic Cells

  • Richard Vile
Part of the Methods in Molecular Biology book series (MIMB, volume 8)

Abstract

The transfer of DNA sequences into a population of cells can rarely, if ever, be achieved with 100% efficiency. Typically, transfection of cells with the calcium phosphate method will transduce only between 0.1 and 1% of the cells with the sequences of interest (1), although some workers have achieved higher efficiencies (2). If the transferred sequences do not confer a selective growth advantage, it is essential to use selection for transduced cells. The marker gene itself may be the gene of interest, e.g., to label a certain cellular population; alternatively, expression of the marker may merely be a convenient selection for the cellular population expressing another gene that has been cotransfected with the marker. Critically, selectable markers permit positive selection (i.e., the cells of interest are not killed); this is in contrast to systems in which demonstration of infection with a virus leads to death of the recipient cell (such as VSV pseudotypes, see  Chapter 9).

Keywords

Marker Gene Glutamine Synthetase Selectable Marker Recipient Cell Selectable Marker Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Graham, F. L. and Van der Eb, A. J. (1973) A new technique for the assay of human adenovirus 5 DNA. Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen, C. and Okayama, H. (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752.PubMedGoogle Scholar
  3. 3.
    Hartman, S. C. and Mulligan, R. C. (1988) Two dominant acting selectable markers for gene transfer studies in mammalian cells. Proc. Natl. Acad. Sci. USA 85,8047–8051.PubMedCrossRefGoogle Scholar
  4. 4.
    Pettinger, R. C., Wolfe, R. N., Hoehn, M. M., Marks, P. N., Dailey, W A., and McGuire, J. M. (1953) Hygromycin. 1. Preliminary studies on the production and biological activity of a new antibiotic. Antibiot. Chemother. 3, 1286–1278.Google Scholar
  5. 5.
    Blochlinger, K and Diggelmann, H. (1984) Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eukaryotic cells Mol. Cell. Biol. 4, 2929–2931PubMedGoogle Scholar
  6. 6.
    Mulligan, R. and Berg, P. (1981) Selection for animal cells that express the escherichia coli gene coding for xanthine-guanine phosphoribosyl transferase Proc. Natl. Acad Sci. USA 78, 2072–2076.PubMedCrossRefGoogle Scholar
  7. 7.
    Urlaub, G. and Chasin, L. A. (1980) Isolation of Chinese hamster cell mutants deficient m dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77, 4216–4220.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Hare, K., Benoist, C, and Breathnach, R. (1981) Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 78,1527–1531PubMedCrossRefGoogle Scholar
  9. 9.
    Cosset, F. L., Legras, C., Chebloune, Y., Savatier, P., Thoraval, P., Thomas, J. L., Samarut, J., Nigon, V. M., and Verdier, G. (1990) A new avian leukosis-based packaging cell line that uses two separate transcomplementing helper genomes. J Virol. 64, 1070–1078.PubMedGoogle Scholar
  10. 10.
    Wigler, M, Silverstein, S., Lee, L., Pellicer, A., Cheng, V., and Axel, R (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232.PubMedCrossRefGoogle Scholar
  11. 11.
    Lowy, I., Pellicer, A., Jackson, J. F., Sim, G.-K., Silverstein, S, and Axel, R. (1980) Isolation of transforming DNA: Cloning the hamster aprt gene. Cell 22, 817–823PubMedCrossRefGoogle Scholar
  12. 12.
    Stark, G. R. (1986) DNA amplification in drug resistant cells and in tumors. Cancer Surveys 5, 1–23.PubMedGoogle Scholar
  13. 13.
    Stark, G.R. and Wahl, G.M. (1984) Gene amplification. Annu. Rev Btochem. 53,447–491CrossRefGoogle Scholar
  14. 14.
    Gorman, C. (1985) High efficiency gene transfer into mammalian cells, in DNA Cloning: A Practical Approach vol. 11 (Glover, D. M. ed.), IRL, Oxford, pp. 143–190.Google Scholar
  15. 15.
    Hayward, B. E., Hussain, A., Wilson, R. H., Lyons, A., Woodcock, V, McIntosh, B, and Harris, T. J. R. (1986) The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucleic Acids Res. 14, 999–1008.PubMedCrossRefGoogle Scholar
  16. 16.
    Bebbington, C. R. and Hentschel, C. C. G. (1987) The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells, in DNA Cloning: A Practical Approch vol. 111 (Glover, D. M, ed.), IRL, Oxford, pp. 163–188.Google Scholar
  17. 17.
    Subramani, S., Mulligan, R., and Berg, P. (1981) Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors. Mol Cell. Biol. 1, 854–864.PubMedGoogle Scholar
  18. 18.
    Kaufman, R. J., Murtha, P, Ingolia, D. E., Yeung, C-Y., and Kellems, R. E. (1986) Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3136–3140.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamer, D. H. and Walling, M. J. (1982) Regulation in vivo of a cloned mammalian gene: Cadmium induces the transcription of a mouse metallothionen gene in SV40 vectors J. Mol. Appl. Genet. 1, 273–288.PubMedGoogle Scholar
  20. 20.
    Southern, P. J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341.PubMedGoogle Scholar
  21. 21.
    Mulligan, R. and Berg, P. (1980) Expression of a bacterial gene in mammalian cells Science 209,1422–1427.PubMedCrossRefGoogle Scholar
  22. 22.
    Sompayrac, L. and Danna, K. (1981) Efficient infection of monkey cells with DNA of simian virus 40. Proc. Natl. Acad. Sci. USA 12, 7575–7578.CrossRefGoogle Scholar
  23. 23.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation Proc. Natl. Acad. Sci. USA 81, 7161–7165.PubMedCrossRefGoogle Scholar
  24. 24.
    Schaffner, W. (1980) Direct tranfer of cloned genes from bacteria to mammalian cells. Proc. Natl. Acad. Sci. USA 77, 2163–2167.PubMedCrossRefGoogle Scholar
  25. 25.
    Felgner, P. L., Gadek, T. R., Holm, M., Roman, R, Chan, H. W., Wenz, M., Northrop, J P., Ringold, G. M., and Danielsen, M. (1987) Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 847413–7417.PubMedCrossRefGoogle Scholar
  26. 26.
    Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host range. Proc Natl. Acad. Sci. USA 85, 6460–6464.PubMedCrossRefGoogle Scholar
  27. 27.
    Xu, L., Yee, J.-K., Wolff, J. A., and Friedmann, T. (1989) Factors affecting long-term stability of moloney murine leukemia virus-based vectors. Virology 171, 331–341.PubMedCrossRefGoogle Scholar
  28. 28.
    Culliton, B. J. (1989) Fighting cancer with designer cells. Science 244, 1430–1483.PubMedCrossRefGoogle Scholar
  29. 29.
    Von Melchner, H. and Ruley, H. E. (1989) Identification of cellular promoters by using a retrovirus promoter trap. J. Virol. 63, 3227–3233.Google Scholar
  30. 30.
    Overell, R. W., Weisser, K. E, and Cosman, D. (1988) Stably transmitted triple promoter retroviral vectors and their use in transformation of primary mammalian cells. Mol. Cell. Biol. 8,1803–1808.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1991

Authors and Affiliations

  • Richard Vile
    • 1
  1. 1.Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonUK

Personalised recommendations