Advertisement

Vaccinia Virus as an Expression Vector

  • Antonio Talavera
  • Javier M. Rodriguez
Part of the Methods in Molecular Biology book series (MIMB, volume 8)

Abstract

Vaccinia virus (Vv) is a member of the genus Orthopoxvirus, one of seven genera included in the family Poxviridae. Most of these viruses infect vertebrates (Orthopoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus, and Parapoxvirus), but one genus, Entomopoxvirus, infects insects. It is interesting to note that the Fibroma and Mixoma viruses of the leporipoxvirus genus cause tumors in their hosts (rabbits), these being the only tumorigenic viruses in the family (1,2).

Keywords

Vaccinia Virus Foreign Gene Fragment HindIII Insertion Vector Competent Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Muller, G. and Williamson, J. D. (1987) Poxviridae, in Animal Virus Structure (Nermut, M V and Steven, A C, eds.), Elsevier, Amsterdam, pp. 421–433.CrossRefGoogle Scholar
  2. 2.
    Ginsberg, H. S. (1990) Poxviruses, in Microbiology 4th Ed (Davis, B. D., Dulbecco, R., Eisen, H. N, and Ginsberg, H. S., eds.), Lippincott, Philadelphia, PA, pp. 947–959.Google Scholar
  3. 3.
    Panicah, D. and Paoletti, E. (1982) Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious Vaccinia virus. Proc. Natl Acad. Sci. USA 79, 4927–4931.CrossRefGoogle Scholar
  4. 4.
    Mackett, M., Smith, G. L., and Moss, B. (1982) Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 79, 7415–7419.PubMedCrossRefGoogle Scholar
  5. 5.
    Piccini, A and Paoletti, E. (1988) Vaccinia Virus, vector, vaccine. Adv. Virus Res. 34, 43–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Wachsman, M., Aurelian, L, Smith, C. C., Lipinskas, B.R, Perkus, M. E., and Paoletti, E. (1987) Protection of guinea pigs from primary and recurrent herpes simplex virus (HSV) type 2 cutaneous disease with Vaccinia virus recombinants expressing HSV glycoprotein D. J. Infect. Dis. 155, 1188–1197.PubMedGoogle Scholar
  7. 7.
    King, A. M. Q., Stott, E J., Langer, S. J., Young, K. K.-Y, Ball, L. A., and Wertz, G. W. (1987) Recombinant Vaccinia viruses carrying the N gene of human respiratory syncitial virus. Studies of gene expression in cell culture and immune response in mice. J. Virol 61, 2885–2890.PubMedGoogle Scholar
  8. 8.
    Spriggs, M. K, Collins, P L., Tierney, E., London, W. T., and Murphy, B R. (1988) Immunization with Vaccinia virus recombinants that express the surface glycoproteins of human parainfluenza virus type 3 (PIV3) protects Patas monkeys against PIV3 infection. J. Virol. 62, 1293–1296.PubMedGoogle Scholar
  9. 9.
    Pensiero, M. N., Jennings, G. B, Schmaljohn, C. S., and Hay, J. (1988) Expression of the Hantan virus M genome segment by using a Vaccinia virus recombinant. J. Virol. 62, 696–702.PubMedGoogle Scholar
  10. 10.
    Karacostas, V., Nagashima, K., Gonda, M. A., and Moss, M. (1989) Human immunodeficiency virus-like particles produced by a Vaccinia virus expression vector. Proc. Natl. Acad. Sci. USA 86, 8964–8967.PubMedCrossRefGoogle Scholar
  11. 11.
    Franke, C. A. and Hruby, D. E. (1987) Association of nonviral proteins with recombinant vaccinia viruses. Arch, Virol. 94, 347–351.CrossRefGoogle Scholar
  12. 12.
    Huang, C, Samsonoff, W. A., and Grzelechi, A. (1988) Vaccinia virus recombinants expressing an 11-kilodalton-β galactosidase fusion protein incorporate active β galactosidase in virus particles. J. Virol 62, 3855–3861PubMedGoogle Scholar
  13. 13.
    Benninck, J. R, Yewdell, J. W., Smith, G. L., Moller, C, and Moss, B. (1984) Recombinant Vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells Nature 311, 578,579.CrossRefGoogle Scholar
  14. 14.
    Yewdell, J. W., Benninck, J. R., Smith, G. L., and Moss, B. (1988) Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 82, 1785–1789CrossRefGoogle Scholar
  15. 15.
    Jonjic, S, del Val, M., Keil, G. M., Reddehase, M. J., and Koszinowski, U. H. (1988) A nonstructural viral protein expressed by a recombinant Vaccinia virus protects against lethal cytomegalovirus infection. J. Virol. 62, 1653–1658.PubMedGoogle Scholar
  16. 16.
    McLaughlin-Taylor, E, Willey, D. E., Cantin, E. M., Eberle, R., Moss, B., and Openshaw, H (1988) A recombinant Vaccinia virus expressing Herpes simplex virus type I glycoprotein B induces cytotoxic T lymphocytes in mice. J. Gen. Virol. 69, 1731–1734PubMedCrossRefGoogle Scholar
  17. 17.
    Flexner, C, Broiles, S. S., Earl, P., Chakrabarti, S., and Moss, B. (1988) Characterization of human immunodeficiency virus gag/pol gene products expressed by recombinant Vaccinia viruses. Virology 166, 339–349.PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards, R. H., Selby, M. J., Mobley, W. C, Weinrich, S. L., Hruby, D. E., and Rutter, W. J. (1988) Processing and secretion of nerve growth factor: Expression in mammalian cells with a Vaccinia virus vector. Mol. Cell. Biol. 8, 2456–2464.PubMedGoogle Scholar
  19. 19.
    de la Salle, H., Altenburger, W., Elkaim, R., Dott, K, Dieterle, A., Drilhen, R., Cazenave, J.-P., Tolstoshev, P., and Lecocq, J.-P. (1985) Acitive gammacarboxyleted human factor IX expressed using recombinant DNA techniques. Nature 316, 268–270.PubMedCrossRefGoogle Scholar
  20. 20.
    Moss, B. (1985) Replication of poxviruses, in Virology (Fields, B. N., Chanock, R. M., and Roizman, B., eds.), Raven, New York, pp. 685–703.Google Scholar
  21. 21.
    Wittek, R., Menna, A., Schumperli, D., Stoffel, S, Muller, H. K., and Wiler, R. (1977) Hind III and Sst I restriction sites mapped on rabbit poxvirus and Vaccinia virus DNA. J. Virol 23, 669–678.PubMedGoogle Scholar
  22. 22.
    Geshelin, P. and Berns, K. I. (1974) Characterization and localization of the naturally occurying crosslinks in Vaccinia virus DNA. J. Mol Biol 88, 785–796PubMedCrossRefGoogle Scholar
  23. 23.
    Baroudy, B. M., Venkatesan, S., and Moss, B. (1982) Incomplete base-paired flip-flop terminal loops link the two DNA strands of the Vaccinia virus genome into an uninterrupted polynucleotide chain. Cell 28, 315–324.PubMedCrossRefGoogle Scholar
  24. 24.
    Baroudy, B. M., Venkatesan, S., and Moss, B. (1983) Structure and replication of Vaccinia virus telomeres, in Symposium on Quantitative Biology, vol. 47, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 723–729.Google Scholar
  25. 25.
    Moyer, R. W and Graves, R. L. (1981) The mechanism of cytoplasmic orthopoxvirus DNA replication. Cell 27, 391–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Garon, C. F., Barbosa, E., and Moss, B. (1978) Visualization of an inverted repetition in Vaccinia virus DNA. Proc. Natl. Acad. Sci. USA 75, 4863–4867.PubMedCrossRefGoogle Scholar
  27. 27.
    Wittek, R. and Moss, B. (1980) Tandem repeats within the inverted terminal repetitions of Vaccinia virus DNA. Cell, 21 277–284.PubMedCrossRefGoogle Scholar
  28. 28.
    Tomley, F. M. and Cooper, R. J. (1984) The DNA polymerase activity of Vaccinia virus “Virosomes”: Solubilization and properties. J. Gen. Virol 65, 825–829.PubMedCrossRefGoogle Scholar
  29. 29.
    Munyon, W., Paoletti, E., and Grace, J. T., Jr. (1967) RNA polymerase activity in purified infectious Vaccinia virus. Proc. Natl. Acad. Sci. USA 58, 2280–2287.PubMedCrossRefGoogle Scholar
  30. 30.
    Baroudy, B. M. and Moss, B. (1980) Purification and characterization of a DNA dependent RNA polymerase from Vaccinia virus. J. Biol. Chem. 255, 4372–4380.PubMedGoogle Scholar
  31. 31.
    Monroy, G., Spencer, H., and Hurwitz J. (1978) Purification of mRNA guanylyl transferase from Vaccinia virions. J. Biol. Chem. 253, 4481–4489.PubMedGoogle Scholar
  32. 32.
    Barbosa, E. and Moss, B. (1977) mRNA (nucleoside-2′-)-methyl transferase from Vaccinia virus. J. Biol. Chem. 253, 7692–7697.Google Scholar
  33. 33.
    Moss, B., Rosenblum, E. N., and Gershowitz, A. (1975) Characterization of polyadenylate polymerase from Vaccinia vinons. J. Biol Chem. 250, 4722–4729.PubMedGoogle Scholar
  34. 34.
    Traktman, P., Sheidar, P., Condit, R. C, and Roberts, B. E. (1984) Transcriptional mapping of the DNA polymerase gene of Vaccinia virus. J. Virol. 49, 125–131.PubMedGoogle Scholar
  35. 35.
    Earl, P. L., Jones, E. V., and Moss, B. (1986) Homology between DNA polymerases of poxviruses, herpesviruses and adenoviruses: Nucleotide sequence of the Vaccinia virus DNA polymerase gene. Proc. Natl. Acad. Sci. USA 83, 3659–3663.PubMedCrossRefGoogle Scholar
  36. 36.
    Weir, J. P., Bajszar, G., and Moss, B. (1982) Mapping of the Vaccinia virus Thymidine kinase gene by marker rescue and cell-free translation of selected mRNA Proc. Natl. Acad. Sci. USA 79, 1210–1214.PubMedCrossRefGoogle Scholar
  37. 37.
    Weir, J. P. and Moss, B. (1983) Nucleotide sequence of the Vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. J. Virol. 46, 530–537.PubMedGoogle Scholar
  38. 38.
    Hruby, D. E., Maki, R. A., Miller, D. B., and Ball, L. A. (1983) Fine structure analysis and nuleotide sequence of the Vaccinia virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 80, 3411–3415.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith, G. L., deCarlos, A., and San Chan, Y. (1989) Vaccinia virus encodes a thymidilate kinase gene: Sequence and transcriptional mapping. Nucleic Acids Res. 17, 7581–7590.PubMedCrossRefGoogle Scholar
  40. 40.
    Bertholet, C, Van Heir, E., ten Heggeler-Bordier, B., and Wittek, R. (1987) Vaccinia virus produces late mRNA by discontinuous synthesis. Cell 50, 153–162.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwer, B. and Stunnenberg, H. G. (1988) Vaccinia virus late transcripts generated in vitro a poly(A) head. EMBO J. 7, 1183–1190.PubMedGoogle Scholar
  42. 42.
    Wittek, R., Richner, B., and Hiller, G. (1984) Mapping of the genes coding for the two major Vaccinia virus core polypeptides. Nucleic Acids Res. 12, 4835–4847.PubMedCrossRefGoogle Scholar
  43. 43.
    De Filippes, F. M. (1982) Retriction enzyme mapping of Vaccinia virus DNA. J. Virol. 43, 136–149.Google Scholar
  44. 44.
    Moss, B., Winters, E., and Cooper, J. A. (1981) Deletion of a 9000 base-pair segment of the Vaccinia virus genome that encodes nonessential polypepotides. J. Virol. 40, 387–395.PubMedGoogle Scholar
  45. 45.
    Weir, J. P. and Moss, B. (1987) Determination of the promoter region of an early Vaccinia virus gene encoding Thymidine kinase. Virology 158, 206–210.PubMedCrossRefGoogle Scholar
  46. 46.
    Davison, A. J. and Moss, B. (1990) Structure of Vaccinia virus early promoters. J. Mol. Biol. 210, 749–769.CrossRefGoogle Scholar
  47. 47.
    Davison, A.J. and Moss, B. (1990) Structure of Vaccinia virus late promoters.J. Mol. Biol. 210, 771–784.Google Scholar
  48. 48.
    Pellicer, A. and Esteban, M. (1982) Gene transfer, stability, and biochemical properties of animal cells transformed with Vaccinia DNA. Virology 122, 363–380.PubMedCrossRefGoogle Scholar
  49. 49.
    Venkatesan, S. and Moss, B. (1981) In vitro transcription of the inverted terminal repetition of the Vaccinia virus genome: Correspondence of initiation and cap sites J. Vtrol. 37, 738–747.Google Scholar
  50. 50.
    Cochran, M.A., Puckett, C., and Moss, B. (1985) In Vitro mutagenesis of the promoter region for a Vaccinia virus gene. Evidence for tandem early and late regulatory signals. J. Virol. 54, 30–37.PubMedGoogle Scholar
  51. 51.
    Bertholet, C, Drillien, R., and Wittek, R. (1985) One hundred base pairs 5′ flanking sequence of a Vaccinia virus late gene are sufficient to temporally regulate transcription. Proc. Natl. Acad. Sci. USA 82, 2096–2100.PubMedCrossRefGoogle Scholar
  52. 52.
    Bolivar, F., Rodriguez, R. L., Greene, P.J., Betlach, M. C, Meyneker H. L., and Boyer, H. W. (1977) Construction and characterization of new cloning vehicles. II: A multipurpose cloning system. Gene 2, 95–113.PubMedCrossRefGoogle Scholar
  53. 53.
    Mackett, M., Smith, G. I., and Moss, B. (1984) General method for production and selection of infectious Vaccinia virus recombinants expressing foreign genes. J. Virol. 49, 857–864.PubMedGoogle Scholar
  54. 54.
    Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.PubMedCrossRefGoogle Scholar
  55. 55.
    Boyle, D. B., Coupar, B. E. H., and Both, G. W. (1985) Multiple-cloning-site for the rapid construction of recombinant poxviruses. Gene 35, 169–177.PubMedCrossRefGoogle Scholar
  56. 56.
    Chakrabarti, S., Brechling, K, and Moss, B. (1985) Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5, 3403–3409.PubMedGoogle Scholar
  57. 57.
    Wilson, E. M., Hodges, W. M., and Hruby, D. E. (1986) Construction of recombinant Vaccinia virus strains using single-stranded DNA insertion vectors. Gene 49,207–213.PubMedCrossRefGoogle Scholar
  58. 58.
    Moss, B., Smith, G. L., and Mackett, M. (1983) Use of Vaccinia virus as an infectious molecular cloning and expression vector, in Gene Amplification and Analysts (Papas, T. K., Rosenberg, M. and Chirikjian, J. G., eds.), Elsevier, New York, pp. 201–213.Google Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1991

Authors and Affiliations

  • Antonio Talavera
    • 1
  • Javier M. Rodriguez
    • 2
  1. 1.Centro Nacional de BiotechnologiaMadridSpain
  2. 2.Centro de Biologia Molecular (CSIS-UAM)MadridSpain

Personalised recommendations