Skip to main content

Bioinformatics Platform Development

From Gene to Lead Compound

  • Protocol
Book cover Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 316))

Abstract

In the past 10 yr, the field of bioinformatics has been characterized by the mapping of many genomes. These efforts have stimulated explosive development of novel bioinformatics and experimental approaches to predict the functions and metabolic role of the new proteins. The main application of the work is to search, validate, and prioritize new targets for designing a new generation of drugs. Modern computer and experimental methods for discovery of new lead compounds have also expanded and integrated into the process referred to as rational drug design. They are directed to accelerate and optimize the drug discovery process using experimental and virtual (computer-aided drug discovery) methods. Recently, these methods and approaches have merged into a “from gene to lead” platform that includes the processes from new target discovery through obtaining highly effective lead compounds. This chapter describes the strategies as employed by the “From Gene to Lead” platform, including the major computer and experimental approaches and their interrelationship. The latter part of the chapter contains some examples of the steps required for implementing this platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lohse, M. J. (1998) The future of pharmacology. Trends Pharmacol. Sci. 19, 198–200.

    Article  PubMed  CAS  Google Scholar 

  2. Borchardt, J. K. (2001) New drug development costs now average $802 million. Alchemist 6. (http://www.chemweb.com/alchem/articles/1005928853806.html). Accessed on 12/6/2004.

  3. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov.

  4. Kulikova, T., Aldebert, P., Althorpe, N., et al. (2004) The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 32(database issue), D27–D30. (http://www.ebi.ac.uk/embl).

    Article  PubMed  CAS  Google Scholar 

  5. DNA Data Bank of Japan, http://www.ddbj.nig.ac.jp.

  6. Boeckmann, B., Bairoch, A., Apweiler, R., et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (http://www.expasy.org/sprot).

    Article  PubMed  CAS  Google Scholar 

  7. Wu, C. H., Huang, H., Yeh, L.-S. L., and Barker, W. C. (2003) Protein family classification and functional annotation. Comput. Biol. Chem. 27, 37–47 (http://pir.georgetown.edu)

    Article  PubMed  CAS  Google Scholar 

  8. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinfor. 4, 41.

    Article  Google Scholar 

  9. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(database issue), D277–D280.

    Article  PubMed  CAS  Google Scholar 

  10. Pandit, S. B., Bhadra, R., Gowri, V. S., Balaji, S., Anand, B., and Srinivasan, N. (2004) SUPFAM: a database of sequence superfamilies of protein domains. BMC Bioinf. 5, 28–32. (http://www.sanger.ac.uk/Software/Pfam/).

    Article  Google Scholar 

  11. Haft, D. H., Selengut, J. D., and White, O. (2003) The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (http://www.tigr.org/TIGRFAMs/).

    Article  PubMed  CAS  Google Scholar 

  12. Peterson, J. D., Umayam, L. A., Dickinson, T., Hickey, E. K., and White, O. (2001) The comprehensive microbial resource. Nucleic Acids Res. 29, 123–125 (http://www.tigr.org/CMR).

    Article  PubMed  CAS  Google Scholar 

  13. Uchiyama, I. (2003) MBGD: microbial genome database for comparative analysis. Nucleic Acids Res. 31, 58–62 (http://mbgd.genome.ad.jp).

    Article  PubMed  CAS  Google Scholar 

  14. Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., and Eisenberg, D. (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (http://dip.doe-mbi.ucla.edu).

    Article  PubMed  CAS  Google Scholar 

  15. Bader, G. D., Betel, D., and Hogue, C. W. (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250 (http://bind.ca).

    Article  PubMed  CAS  Google Scholar 

  16. Ng, S. K., Zhang, Z., and Tan, S. H. (2003) Integrative approach for computationally inferring protein domain interactions. Bioinformatics 19, 923–929(http://interdom.lit.org.sg).

    Article  PubMed  CAS  Google Scholar 

  17. Suhre, K. and Claverie, J.-M. (2004) FusionDB: a database for in-depth analysis of prokaryotic gene fusion events. Nucleic Acids Res. 32(database issue), D273–D276 (http://igs-server.cnrs-mrs.fr/FusionDB/).

    Article  PubMed  CAS  Google Scholar 

  18. NCGR, National Center for Genome Resources, http://www.ncgr.org/pathdb/.

  19. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (http://www.rcsb.org/pdb).

    Article  PubMed  CAS  Google Scholar 

  20. Noguchi, T. and Akiyama, Y. (2003) PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res. 31, 492, 493 (http://mbs.crbc.jp/pdbreprdb-cgi/reprdb_menu.pl).

    Article  PubMed  CAS  Google Scholar 

  21. Frishman, D., Mokrejs, M., Kosykh, D., et al. (2003) The PEDANT genome database. Nucleic Acids Res. 31, 207–211 (http://pedant.gsf.de).

    Article  PubMed  CAS  Google Scholar 

  22. Galperin, M. Y. (2004) The Molecular Biology Database Collection: 2004 update. Nucleic Acids Res. 32(database issue), D3–D22.

    Article  PubMed  CAS  Google Scholar 

  23. Freiberg, C. (2001) Novel computation methods in anti-microbial target identification. Drug Discov. Today 6, S72–S80.

    Article  CAS  Google Scholar 

  24. Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B58, 380–388 (http://www.ccdc.cam.ac.uk).

    CAS  Google Scholar 

  25. National Cancer Institute: Pure Chemicals Repository, http://www.dtp.nci.nih.gov/branches/dscb/repo_open.html.

  26. MDL Drug Data Report, MDL Information Systems, http://www.mdl.com.

  27. Comprehensive Medicinal Chemistry, MDL Information Systems, http://www.mdl.com.

  28. ASINEX Ltd., http://www.asinex.com.

  29. ChemBridge Corporation, http://www.chembridge.com.

  30. Maybridge, http://www.maybridge.com.

  31. SYBYL 6.7.1, Tripos Inc., http://www.tripos.com.

  32. Spaltmann, F., Blunck, M., and Ziegelbauer, K. (1999) Computer-aided target selectionprioritizing targets for antifungal drug discovery. Drug Discov. Today 4, 17–26.

    Article  PubMed  CAS  Google Scholar 

  33. Dubanov, A. V., Ivanov, A. S., and Archakov, A. I. (2001) Computer searching of new targets for antimicrobial drugs based on comparative analysis of genomes. Vopr. Med. Khim. 47, 353–367 (in Russian).

    PubMed  CAS  Google Scholar 

  34. Genedatar, http://www.genedata.com.

  35. The Perl Directory, http://www.perl.org.

  36. Python, http://www.python.org.

  37. Mangalam, H. (2002) The Bio* toolkits—a brief overview. Brief Bioinform. 3, 296–302.

    Article  PubMed  Google Scholar 

  38. Bioperl, http://www.bioperl.org.

  39. Biopython, http://www.biopython.org.

  40. Entrez Programming Utilities, http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html.

  41. BLAST, http://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html.

  42. Accelrys, http://www.accelrys.com.

  43. Case, D. A., Darden, T. A., Cheatham, T. E. III, et al. (2004) AMBER 8, University of California, San Francisco (http://amber.scripps.edu).

    Google Scholar 

  44. Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995) GROMACS: A messagepassing parallel molecular dynamics implementation. Comp. Phys. Commun. 91, 43–56 (http://www.gromacs.org).

    Article  CAS  Google Scholar 

  45. Allsop, A. E. (1998) New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr. Opin. Microbiol. 1, 530–534.

    Article  PubMed  CAS  Google Scholar 

  46. Veselovsky, A. V., Ivanov, Y. D., Ivanov, A. S., Archakov, A. I., Lewi, P., and Janssen, P. (2002) Protein-protein interactions: mechanisms and modification by drugs. J. Mol. Recognit. 15, 405–422.

    Article  PubMed  CAS  Google Scholar 

  47. Archakov, A. I., Govorun, V. M., Dubanov, A. V., et al. (2003) Protein-protein interactions as a target for drugs in proteomics. Proteomics 3, 380–391.

    Article  PubMed  CAS  Google Scholar 

  48. Rost, B., Liu, J., Wrzeszczynski, K. O., and Ofran, Y. (2003) Automatic prediction of protein fuction. Cell. Mol. Life Sci. 60, 2637–2650.

    Article  PubMed  CAS  Google Scholar 

  49. Eisenberg, D., Marcotte, E. M., Xenarios, I., and Yeates, T. O. (2000) Protein function in the post-genomic era. Nature 2000 405, 823–826.

    Article  CAS  Google Scholar 

  50. Butte A. J. and Kohane I. S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 415–426.

    Google Scholar 

  51. Yanai, I. and DeLisi, C. (2002) The society of genes: networks of functional links between genes from comparative genomics. Genome Biol. 3, research0064/12 (http://genomebiology.com/content/pdg/gb-2002-3-11-research0064.pdf).

  52. Jansen, R., Lan, N., Qian, J., and Gerstein, M. (2002) Integration of genomic datasets to predict protein complexes in yeast. J. Struct. Funct. Genomics 2, 71–81.

    Article  PubMed  CAS  Google Scholar 

  53. Jansen, R., Yu, H., Greenbaum, D., et al. (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453.

    Article  PubMed  CAS  Google Scholar 

  54. Marcotte, E. M., Xenarios, I., van Der Bliek, A. M., and Eisenberg D. (2000) Localizing proteins in the cell from their phylogenetic profiles. Proc. Natl. Acad. Sci. USA 97, 12,115–12,120.

    Article  PubMed  CAS  Google Scholar 

  55. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A., and Pucci, M. J. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162.

    Article  PubMed  CAS  Google Scholar 

  56. Boguslavsky, J. (2002) Target validation: finding a needle in a haystack. Drug Discov. Dev. 5, 41–48.

    Google Scholar 

  57. Lau, A. T., He, Q. Y., and Chiu, J. F. (2003) Proteomic technology and its biomedical application. Acta Biochim. Biophys. Sinica 35, 965–975.

    Google Scholar 

  58. Walgren, J. L. and Thompson, D. C. (2004) Application of proteomic technologies in the drug development process. Toxicol. Lett. 149, 377–385.

    Article  PubMed  CAS  Google Scholar 

  59. Cooper, R. A. and Carucci, D. J. (2004) Proteomic approaches to studying drug targets and resistance in Plasmodium. Curr. Drug Targets Infect. Disord. 4, 41–51.

    Article  PubMed  Google Scholar 

  60. Flory, M. R. and Aebersold, R. (2003) Proteomic approaches for the identification of cell cycle-related drug targets. Prog. Cell. Cycle Res. 5, 167–171.

    PubMed  Google Scholar 

  61. Lopez, M. F. (1998) Proteomic databases: roadmaps for drug discovery. Am. Clin. Lab. 17, 16–18.

    PubMed  CAS  Google Scholar 

  62. Jones, S. and Thornton, J. M. (1995) Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63, 31–65.

    Article  PubMed  CAS  Google Scholar 

  63. Wilkinson, K. D. (2004) Quantitative analysis of protein-protein interactions. Methods Mol. Biol. 261, 15–32.

    PubMed  CAS  Google Scholar 

  64. Nedelkov, D. and Nelson, R. W. (2003) Delineating protein-protein interactions via biomolecular interaction analysis-mass spectrometry. J. Mol. Recognit. 16, 9–14.

    Article  PubMed  CAS  Google Scholar 

  65. Strosberg, A. D. (2002) Protein interaction mapping for target validation: the need for an integrated combinatory process involving complementary approaches. Curr. Opin. Mol. Ther. 4, 594–600.

    PubMed  CAS  Google Scholar 

  66. Pillutla, R. C., Goldstein, N. I., Blume, A. J., and Fisher, P. B. (2002) Target validation and drug discovery using genomic and protein-protein interaction technologies. Expert Opin. Ther. Targets 6, 517–531.

    Article  PubMed  CAS  Google Scholar 

  67. Butcher, S. P. (2003) Target discovery and validation in the post-genomic era. Neurochem. Res. 28, 367–371.

    Article  PubMed  CAS  Google Scholar 

  68. Williams, M. (2003) Target validation. Curr. Opin. Pharmacol. 3, 571–577.

    Article  PubMed  CAS  Google Scholar 

  69. Cowman, A. F. and Crabb, B. S. (2003) Functional genomics: identifying drug targets for parasitic diseases. Trends Parasitol. 19, 538–543.

    Article  PubMed  CAS  Google Scholar 

  70. Sheppard, D. (1994) Dominant negative mutants: tools for the study of protein function in vitro and in vivo. Am. J. Respir. Cell. Mol. Biol. 11, 1–6.

    PubMed  CAS  Google Scholar 

  71. Homanics, G. E., Quinlan, J. J., Mihalek, R., and Firestone, L. L. (1998) Genetic dissection of the molecular target(s) of anesthetics with the gene knockout approach in mice. Toxicol. Lett. 100–101, 301–307.

    Article  PubMed  Google Scholar 

  72. Luscombe, N. M., Austin, S. E., Berman, H. M., and Thornton, J. M. (2000) An overview of the structures of protein-DNA complexes. Genome Biol. 1, reviews 001.1–001.10 (http://genomebiology.com/content/pdf/gb-2000-1-1-reviews001.pdf).

  73. Kim, C. A. and Berg, J. M. (1996) A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat. Struct. Biol. 3, 940–945.

    Article  PubMed  CAS  Google Scholar 

  74. Jacobs, G. H. (1992) Determination of the base recognition positions of zinc finger from sequence-analysis. EMBO J. 11, 4507–4517.

    PubMed  CAS  Google Scholar 

  75. Pavletich, N. P. and Pabo, C. O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1A. Science 252, 809–817.

    Article  PubMed  CAS  Google Scholar 

  76. Suzuki, M., Gerstein, M. B., and Yagi, N. (1994) Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res. 22, 3397–3405.

    Article  PubMed  CAS  Google Scholar 

  77. Cech, T. R. (1992) Ribozyme engineering. Curr. Opin. Struct. Biol. 2, 605–609.

    Article  CAS  Google Scholar 

  78. Breaker, R. R. (1997) In vitro selection of catalytic polynucleotides. Chem. Rev. 97, 371–390.

    Article  PubMed  CAS  Google Scholar 

  79. Usman, N., Beigelman, L., and McSwiggen, J. A. (1996) Hammerhead ribozyme engineering. Curr. Opin. Struct. Biol. 6, 527–533.

    Article  PubMed  CAS  Google Scholar 

  80. Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide. Nature 328, 596–600.

    Article  PubMed  CAS  Google Scholar 

  81. Jarvis, T. C., Bouhana, K. S., Lesch, M. E., et al. (2000) Ribozymes as tools for therapeutic target validation in arthritis. J. Immunol. 165, 493–498.

    PubMed  CAS  Google Scholar 

  82. Goodchild, J. (2002) Hammerhead ribozymes for target validation. Expert Opin. Ther. Targets 6, 235–247.

    Article  PubMed  CAS  Google Scholar 

  83. Lehner, B., Fraser, A. G., and Sanderson, C. M. (2004) Technique review: how to use RNA interference. Brief Funct. Genomic Proteomic 3, 68–83.

    Article  PubMed  CAS  Google Scholar 

  84. Jain, K. K. (2004) RNAi and siRNA in target validation. Drug Discov. Today 9, 307–309.

    Article  PubMed  Google Scholar 

  85. Henning, S. W. and Beste, G. (2002) Loss-function strategies in drug target validation. Curr. Drug Discov. 5, 17–21.

    Google Scholar 

  86. Baker, B. F. and Monia, B. P. (1999) Novel mechanisms for antisense mediated regulation of gene expression. Biochim. Biophys. Acta 1489, 3–18.

    PubMed  CAS  Google Scholar 

  87. Inouye, M. (1988) Antisense RNA: its functions and applications in gene regulation—a review. Gene 72, 25–34.

    Article  PubMed  CAS  Google Scholar 

  88. Ravichandran, L. V., Dean, N. M., and Marcusson, E. G. (2004) Use of antisense oligonucleotides in functional genomics and target validation. Oligonucleotides 14, 49–64.

    Article  PubMed  CAS  Google Scholar 

  89. Ji, Y., Yin, D., Fox, B., Holmes, D. J., Payne, D., and Rosenberg, M. (2004) Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol. Lett. 231, 177–184.

    Article  PubMed  CAS  Google Scholar 

  90. Lavery, K. S. and King, T. H. (2003) Antisense and RNAi: powerful tools in drug target discovery and validation. Curr. Opin. Drug Discov. Dev. 6, 561–569.

    CAS  Google Scholar 

  91. Taylor, M. F. (2001) Target validation and functional analyses using antisense oligonucleotides. Expert Opin. Ther. Targets 5, 297–301.

    Article  PubMed  CAS  Google Scholar 

  92. Dean, N. M. (2001) Functional genomics and target validation approaches using antisense oligonucleotide technology. Curr. Opin. Biotechnol. 12, 622–625.

    Article  PubMed  CAS  Google Scholar 

  93. Koller, E., Gaarde, W. A., and Monia, B. P. (2000) Elucidating cell signaling mechanisms using antisense technology. Trends Pharmacol. Sci. 21, 142–148.

    Article  PubMed  CAS  Google Scholar 

  94. Bennett, C. F. and Cowsert, L. M. (1999) Application of antisense oligonucleotides for gene functionalization and target validation. Curr. Opin. Mol. Ther. 1, 359–371.

    PubMed  CAS  Google Scholar 

  95. Ho, S. P. and Hartig, P. R. (1999) Antisense oligonucleotides for target validation in the CNS. Curr. Opin. Mol. Ther. 1, 336–343.

    PubMed  CAS  Google Scholar 

  96. Somagenics, http://www.somagenics.com/platform.html.

  97. Pellestor, F. and Paulasova, P. (2004) The peptide nucleic acids, efficient tools for molecular diagnosis (review). Int. J. Mol. Med. 13, 521–525.

    PubMed  CAS  Google Scholar 

  98. Gambari, R. (2001) Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr. Pharm. Des. 7, 1839–1862.

    Article  PubMed  CAS  Google Scholar 

  99. Demidov, V. V. (2002) PNA comes of age: from infancy to maturity. Drug Discov. Today 7, 153–155.

    Article  PubMed  Google Scholar 

  100. Ganesh, K. N. and Nielsen, P. E. (2000) Peptide nucleic acids: analogs and derivatives. Curr. Organic Chem. 4, 916–928.

    Google Scholar 

  101. Winters, T. A. (2000) Gene targeting agents, new opportunities for rational drug development. Curr. Opin. Mol. Ther. 2, 670–681.

    PubMed  CAS  Google Scholar 

  102. Nielsen, P. E. (2000) Antisense peptide nucleic acids. Curr. Opin. Mol. Ther. 2, 282–287.

    PubMed  CAS  Google Scholar 

  103. Demidov, V. V. and Frank-Kamenetskii, M. D. (2001) Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods 23, 108–122.

    Article  PubMed  CAS  Google Scholar 

  104. Ray, A. and Norden, B. (2000) Peptide nucleic acid (PNA): its medical and biotechnological applications and promise for the future. FASEB J. 14, 1041–1060.

    PubMed  CAS  Google Scholar 

  105. Banker, D. D. (2001) Monoclonal antibodies: a review. Indian J. Med. Sci. 55, 651–654.

    PubMed  CAS  Google Scholar 

  106. Peet, N. P. (2003) What constitutes target validation? Targets 2, 125–127.

    Article  Google Scholar 

  107. Liao, J. C., Roider, J., and Jay, D. G. (1994) Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc. Natl. Acad. Sci. USA 91, 2659–2663.

    Article  PubMed  CAS  Google Scholar 

  108. Jay, D. G. (1988) Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl. Acad. Sci. USA 85, 5454–5458.

    Article  PubMed  CAS  Google Scholar 

  109. Niewohner, J., Rubenwolf, S., Meyer, E., and Rudert, F. (2001) Laser-mediated protein inactivation for target validation. Am. Genomic/Proteomic Technol. 4, 28–33. (http://www.iscpubs.com/articles/agpt/g0108nie.pdf).

    Google Scholar 

  110. Eustace, B. K. and Jay, D. G. (2003) Fluorophore-assisted light inactivation for multiplex analysis of protein function in cellular processes. Methods Enzymol. 360, 649–660.

    Article  PubMed  CAS  Google Scholar 

  111. Beck, S., Sakurai, T., Eustace, B. K., Beste, G., Schier, R., Rudert, F., and Jay, D. G. (2002) Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics 2, 247–255.

    Article  PubMed  CAS  Google Scholar 

  112. Bradbury, A. (2003) scFvs and beyond. Drug Discov. Today 8, 737–739.

    Article  PubMed  Google Scholar 

  113. Chowdhury, P. S. and Vasmatzis, G. (2003) Engineering scFvs for improved stability. Methods Mol. Biol. 207, 237–254.

    PubMed  CAS  Google Scholar 

  114. van Wyngaardt, W., Malatji, T., Mashau, C., et al. (2004) A large semi-synthetic single-chain Fv phage display library based on chicken immunoglobulin genes. BMC Biotechnol. 4, 6.

    Article  PubMed  Google Scholar 

  115. Toleikis, L., Broders, O., and Dubel, S. (2004) Cloning single-chain antibody fragments (scFv) from hybridoma cells. Methods Mol. Med. 94, 447–458.

    PubMed  CAS  Google Scholar 

  116. Tanaka, T., Lobato, M. N., and Rabbitts, T. H. (2003) Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J. Mol. Biol. 331, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  117. Donini, M., Morea, V., Desiderio, A., et al. (2003) Engineering stable cytoplasmic intrabodies with designed specificity. J. Mol. Biol. 330, 323–332.

    Article  PubMed  CAS  Google Scholar 

  118. Cohen, P. A. (2002) Intrabodies: targeting scFv expression to eukaryotic intracellular compartments. Methods Mol. Biol. 178, 367–378.

    PubMed  CAS  Google Scholar 

  119. Marasco, W. A. (1997) Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther. 4, 11–15.

    Article  PubMed  CAS  Google Scholar 

  120. Mundt, K. E. (2002) Intrabodies—valuable tools for target validation. Selection procedures for the use of intrabodies in functional genomics. Reprinted from Eur. Pharm. Contractor Winter 2001 issue. Samedan Ltd. Tech. ed. 10, 1–5. (http://www.esbatech.com/pr/publications/ebr_preview.pdf).

    Google Scholar 

  121. Rimmele, M. (2003) Nucleic acid aptamers as tools and drugs: recent developments. Chembiochemistry 4, 963–971.

    Article  CAS  Google Scholar 

  122. Burgstaller, P., Girod, A., and Blind, M. (2002) Aptamers as tools for target prioritization and lead identification. Drug Discov. Today 7, 1221–1228.

    Article  PubMed  CAS  Google Scholar 

  123. Toulme, J. J., Di Primo, C., and Boucard, D. (2004) Regulating eukaryotic gene expression with aptamers. FEBS Lett. 567, 55–62.

    Article  PubMed  CAS  Google Scholar 

  124. Ulrich, H., Martins, A. H., and Pesquero, J. B. (2004) RNA and DNA aptamers in cytomics analysis. Cytometry 59A, 220–231.

    Article  CAS  Google Scholar 

  125. Convery, M. A., Rowsell, S., Stonehouse, N. J., et al. (1998) Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution. Nat. Struct. Biol. 5, 133–139.

    Article  PubMed  CAS  Google Scholar 

  126. Burgstaller, P., Jenne, A., and Blind, M. (2002) Aptamers and aptazymes: accelerating small molecule drug discovery. Curr. Opin. Drug Discov. Dev. 5, 690–700.

    CAS  Google Scholar 

  127. Kubinyi, H. (2002) High throughput in drug discovery. Drug Discov. Today 7, 707–709.

    Article  PubMed  Google Scholar 

  128. Ilag, L. L., Ng, J. H., Beste, G., and Henning, S. W. (2002) Emerging high-throughput drug target validation technologies. Drug Discov. Today 7, S136–S142.

    Article  PubMed  CAS  Google Scholar 

  129. Hardy, L. W. and Peet, N. P. (2004) The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discov. Today 9, 117–126.

    Article  PubMed  CAS  Google Scholar 

  130. Flook, P. K., Yan, L., and Szalma, S. (2003) Target validation through high throughput proteomics analysis. Targets 2, 217–223.

    Article  CAS  Google Scholar 

  131. Harris, S. (2001) Transgenic knockouts as part of high-throughput, evidence-based target selection and validation strategies. Drug Discov. Today 6, 628–636.

    Article  PubMed  CAS  Google Scholar 

  132. Xin, H., Bernal, A., Amato, F. A., et al. (2004) High-throughput siRNA-based functional target validation. J. Biomol. Screen. 9, 286–293.

    Article  PubMed  CAS  Google Scholar 

  133. Taylor, M. F., Wiederholt, K., and Sverdrup, F. (1999) Antisense oligonucleotides: a systematic high-throughput approach to target validation and gene function determination. Drug Discov. Today 4, 562–567.

    Article  PubMed  CAS  Google Scholar 

  134. Sinibaldi, R. (2004) Gene expression analysis and R&D. Drug Discov. World 5, 37–43.

    Google Scholar 

  135. Sundberg, S. A., Chow, A., Nikiforov, T., and Wada, H. G. (2000) Microchip-based systems for target validation and HTS. Drug Discov. Today 5, 92–103.

    Article  PubMed  Google Scholar 

  136. Huels, C., Muellner, S., Meyer, H. E., and Cahill, D. J. (2002) The impact of protein biochips and microarrays on the drug development process. Drug Discov. Today 7, S119–S124.

    Article  PubMed  CAS  Google Scholar 

  137. Barsky, V., Perov, A., Tokalov, S., et al. (2002) Fluorescence data analysis on gel-based biochips. J. Biomol. Screen. 7, 247–257.

    Article  PubMed  CAS  Google Scholar 

  138. Rubina, A. Y., Dementieva, E. I., Stomakhin, A. A., et al. (2003) Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques 34, 1008–1022.

    PubMed  CAS  Google Scholar 

  139. Matthews, D. and Kopczynski, J. (2001) Using model-system genetics for drug-based target discovery. Drug Discov. Today 6, 141–149.

    Article  PubMed  CAS  Google Scholar 

  140. Tornell, J. and Snaith, M. (2002) Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov. Today 7, 461–470.

    Article  PubMed  CAS  Google Scholar 

  141. Abuin, A., Holt, K. H., Platt, K. A., Sands, A. T., and Zambrowicz, B. P. (2002) Fullspeed mammalian genetics: in vivo target validation in the drug discovery process. Trends Biotechnol. 20, 36–42.

    Article  PubMed  CAS  Google Scholar 

  142. Russ, A., Stumm, G., Augustin, M., Sedlmeir, R., Wattler, S., and Nehls, M. (2002) Random mutagenesis in the mouse as a toll in drug discovery. Drug Discov. Today 7, 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  143. Rubinstein, A. L. (2003) Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug Discov. Devel. 6, 218–223.

    PubMed  CAS  Google Scholar 

  144. Sumanas, S. and Lin, S. (2004) Zebrafish as a model system for drug target screening and validation. Drug Discov. Today Targets 3, 89–96.

    Article  CAS  Google Scholar 

  145. Sommer, R. J. (2000) Comparative genetics: a third model nematode species. Curr. Biol. 10, R879–R881.

    Article  PubMed  CAS  Google Scholar 

  146. Sternberg, P. W. and Han, M. (1998) Genetics of RAS signaling in C. elegans. Trends Genet. 14, 466–472.

    Article  PubMed  CAS  Google Scholar 

  147. Lee, J., Nam, S., Hwang, S. B., et al. (2004) Functional genomic approaches using the nematode Caenorhabditis elegans as a model system. J. Biochem. Mol. Biol. 37, 107–113.

    Article  PubMed  CAS  Google Scholar 

  148. Wassarman, D. A., Therrien, M., and Rubin, G. M. (1995) The Ras signaling pathway in Drosophila. Curr. Opin. Genet. Dev. 5, 44–50.

    Article  PubMed  CAS  Google Scholar 

  149. VITA (Validation In Vivo of Targets and Assays for Antiinfectives) technology (http://www.cubist.com/ar2000text/discovery.html).

  150. Chopra, I. (2000) New drugs for the superbugs. Microbiol. Today 27, 4–6.

    Google Scholar 

  151. Jackson, L. K. and Phillips, M. A. (2002) Target validation for drug discovery in parasitic organisms. Curr. Top. Med. Chem. 2, 425–438.

    Article  PubMed  CAS  Google Scholar 

  152. Carter, C. W. Jr. and Sweet, R. M. (eds.) (2003) Methods in Enzymology. Volume 368: Macromolecular Crystallography, Part C, Academic, San Diego.

    Google Scholar 

  153. Downing, A. K. (2004) Protein NMR Techniques, 2nd ed. Humana, Totowa, NJ.

    Google Scholar 

  154. Wallin, E. and Von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  155. Grisshammer, R. and Tate, C. G. (1995) Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28, 315–422.

    Article  PubMed  CAS  Google Scholar 

  156. Eswar, N., John, B., Mirkovic, N., et al. (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res. 31, 3375–3380.

    Article  PubMed  CAS  Google Scholar 

  157. Fiser, A. and Sali, A. (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491.

    Article  PubMed  CAS  Google Scholar 

  158. Topham, C. M., Thomas, P., Overington, J. P., Johnson, M. S., Eisenmenger, F., and Blundell, T. L. (1990) An assessment of COMPOSER: a rule-based approach to modelling protein structure. Biochem. Soc. Symp. 57, 1–9.

    PubMed  CAS  Google Scholar 

  159. Protein Structure Prediction Center, http://predictioncenter.llnl.gov.

  160. Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. (2003) Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins 53(Suppl. 6), 334–339.

    Article  PubMed  CAS  Google Scholar 

  161. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html).

    Article  CAS  Google Scholar 

  162. Protable. http://www.tripos.com/sciTech/inSilicoDisc/media/LITCTR/PROTABLE.PDF.

  163. Godzik, A., Kolinski, A., and Skolnick, J. (1993) De novo and inverse folding predictions of protein structure and dynamics. J. Comput. Aided Mol. Des. 7, 397–438 (http://www.tripos.com/admin/LitCtr/matchmaker.pdf).

    Article  PubMed  CAS  Google Scholar 

  164. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (http://cmbi.kun.nl/whatif/).

    Article  PubMed  CAS  Google Scholar 

  165. Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362 (http://smft.www.came.sbg.ac.at/came-frames/prosa.html).

    Article  PubMed  CAS  Google Scholar 

  166. Luthy, R., Bowie, J. U., and Eisenberg, D. (1992) Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (http://www.accelrys.com/products/datasheets/i2_profiles_3d_data.pdf).

    Article  PubMed  CAS  Google Scholar 

  167. Myers, P. L. (1997) Will combinatorial chemistry deliver real medicines? Curr. Opin. Biotechnol. 8, 701–707.

    Article  PubMed  CAS  Google Scholar 

  168. Fernandes, P. B. (1998) Technological advances in high-throughput screening. Curr. Opin. Chem. Biol. 2, 597–603.

    Article  PubMed  CAS  Google Scholar 

  169. Entzeroth, M. (2003) Emerging trends in high-throughput screening. Curr. Opin. Pharmacol. 3, 522–529.

    Article  PubMed  CAS  Google Scholar 

  170. Clark, D. E. and Pickett, S. D. (2000) Computational methods for the prediction of “druglikeness.” Drug Discov. Today 5, 49–58.

    Article  PubMed  CAS  Google Scholar 

  171. Kubinyi, H. (1998) Structure-based design of enzyme inhibitors and receptor ligands. Curr. Opin. Drug Discov. Dev. 1, 4–15.

    CAS  Google Scholar 

  172. Ivanov, A. S., Dubanov, A. V., Skvortsov, V. S., and Archakov, A. I. (2002) Computer aided drug design based on structure of macromolecular target: I. Search and description of ligand binding site in target protein. Vopr. Med. Khim. 48, 304–315 (in Russian).

    PubMed  CAS  Google Scholar 

  173. Hoffmann, D., Kramer, B., Washio, T., Steinmetzer, T., Rarey, M., and Lengauer, T. (1999) Two-stage method for protein-ligand docking. J. Med. Chem. 42, 4422–4433.

    Article  PubMed  CAS  Google Scholar 

  174. Hubbard, R. E. (1997) Can drugs be designed? Curr. Opin. Biotechol. 8, 696–700.

    Article  CAS  Google Scholar 

  175. Flohr, S., Kurz, M., Kostenis, E., Brkovich, A., Fournier, A., and Klabunde. T. (2002) Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II. J. Med. Chem. 45, 1799–1805.

    Article  PubMed  CAS  Google Scholar 

  176. Ghose, A. K. and Wendoloski, J. J. (1998) Pharmacophore modeling: methods, experimental verification and applications, in Perspectives in Drug Discovery and Design, vol. 9–11, pp. 253–271.

    Article  Google Scholar 

  177. Kettmann, V. and Holtje, H.-D. (1998) Mapping of the benzothiazepine binding site on the calcium channel. Quant. Struct.-Act. Relat. 17, 91–101.

    Article  CAS  Google Scholar 

  178. Zbinden, P., Dobler, M., Folkers, G., and Vedani, A. (1998) PrGen: pseudoreceptor modeling using receptor-mediated ligand alignment and pharmacophore equilibration. Quant. Struct.-Act. Relat. 17, 122–129.

    Article  CAS  Google Scholar 

  179. Schleifer, K.-J. (2000) Pseudoreceptor model for ryanodine derivatives at calcium release channels. J. Comput.-Aided Mol. Des. 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  180. Veselovsky, A. V., Tikhonova, O. V., Skvortsov, V. S., Medvedev, A. E., and Ivanov, A. S. (2001) An approach for visualization of active site of enzymes with unknown threedimensional structures. QSAR SAR Environ. Res. 12, 345–358.

    Article  CAS  Google Scholar 

  181. Kubinyi, H. (1994) Variable selection in QSAR studies. I. An evolutionary algorithm. Quant. Struct.-Act. Relat. 13, 285–294.

    CAS  Google Scholar 

  182. Kim, K. H. (1995) Comparative molecular field analysis (CoMFA), in Molecular Simulation and Drug Design (Dean, P. M., ed.), Blackie Academic & Professional, London, UK, pp. 291–331.

    Google Scholar 

  183. Cramer, R. D. III, Petterson, D. E., and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of share on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967.

    Article  CAS  Google Scholar 

  184. Sippl, W. (2000) Receptor-based 3D QSAR analysis of estrogen receptor ligands-merging the accuracy of receptor-based alignments with the computational efficiency of ligandbased methods. J. Comput.-Aided Mol. Des. 14, 559–572.

    Article  PubMed  CAS  Google Scholar 

  185. Sippl, W., Contreras, J.-M., Parrot, I., Rival, Y. M., and Wermuth, C. G. (2001) Structurebased 3D QSAR and design of novel acetylcholineesterase inhibitors. J. Comput.-Aided Mol. Des. 15, 395–410.

    Article  PubMed  CAS  Google Scholar 

  186. MDL Information Systems, http://www.mdl.com.

  187. UNITY® 4.4.2 Tripos Inc., http://www.tripos.com.

  188. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Landridge, R., and Ferrin, T. E. (1982) A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288.

    Article  PubMed  CAS  Google Scholar 

  189. Ewing, T. J. A., Makino, S., Skillman, A. G., and Kuntz, I. D. (2001) DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des. 15, 411–428.

    Article  PubMed  CAS  Google Scholar 

  190. BioSolveIT GmbH, http://www.biosolveit.de.

  191. DockSearch. http://Imgdd.ibmh.msk.su/lab/docksearch.

  192. Raevsky, O. A., Trepalin, S. V., Trepalina, E. P., Gerasimenko, V. A., and Raevskaja, O. E. (2002) SLIPPER-2001—software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity. J. Chem. Inf. Comput. Sci. 42, 540–549.

    PubMed  CAS  Google Scholar 

  193. Raevsky, O. A., Schaper, K.-J., van de Waterbeemd, H., and McFarland, J. W. (2000) Hydrogen bond contributions to properties and activities of chemicals and drugs, in Molecular Modelling and Prediction of Bioactivity (Gundertofe, K. and Jorgensen, F., eds.), Kluwer Academic/Plenum, New York, pp. 221–227.

    Google Scholar 

  194. CORINA, http://www2.chemie.uni-erlangen.de/software/corina.

  195. Molecular Networks GmbH, http://www.mol-net.de.

  196. Pearlman, R. S. (1987) Rapid generation of high quality approximate 3-dimension molecular structures. Chem. Des. Auto. News 2, 1–7.

    Google Scholar 

  197. Pearlman, R.S. “Concord User’s Manual,” distributed by Tripos Inc., http://www.tripos.com.

  198. Pearlman, R. S. and Balducci, R. (1998) Confort: a novel algorithm for conformational analysis. National Meeting of the American Chemical Society, New Orleans. (http://www.tripos.com/sciTech/inSilicoDisc/media/LITCTR/CONFORT.PDF).

  199. CONFLEX Corporation, http://www.conflex.us.

  200. Jones, G., Willett, P., Glen, R., Leach, A. R., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  201. Muegge, I. and Martin, Y. C. (1999) A general and fast scoring function for proteinligand interactions: a simplified potential approach. J. Med. Chem. 42, 791–804.

    Article  PubMed  CAS  Google Scholar 

  202. Ewing, T. J. A. and Kuntz, I. D. (1996) Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comp. Chem. 18, 1175–1189 (http://dock.compbio.ucsf.edu).

    Article  Google Scholar 

  203. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput.-Aided Mol. Des. 11, 425–445.

    Article  PubMed  CAS  Google Scholar 

  204. Wang, R., Liu, L., Lai, L., and Tang, Y. (1998) SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4, 379–394.

    Article  CAS  Google Scholar 

  205. Krepets, V. V., Belkina, N. V., Skvortsov, V. S., and Ivanov, A. S. (2000) Prediction of binding affinities for protein-ligand complexes by using non-linear models. Vopr. Med. Chim. 46, 462–474 (in Russian).

    CAS  Google Scholar 

  206. Clark, R. D., Strizhev, A., Leonard, J. M., Blake, J. F., and Matthew, J. B. (2002) Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model. 20, 281–295.

    Article  PubMed  CAS  Google Scholar 

  207. Pearlman, D. A. and Rao, B. G. (1998) Free energy calculations: methods and applications, in Encyclopedia of Computational Chemistry (von Schleyer, P. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., and Schaefer, H. F. III, eds.), John Wiley, Chichester, UK, pp. 1036–1061.

    Google Scholar 

  208. Bohm, H. J. (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput.-Aided. Mol. Des. 6, 61–78.

    Article  PubMed  CAS  Google Scholar 

  209. Lawrence, M. C. and David, P. C. (1992) CLIX: a search algorithm for finding novel ligands capable of binding protein of known three-dimensional structure. Proteins: Struct. Funct. Genet. 12, 31–41.

    Article  CAS  Google Scholar 

  210. Bartlett, P. A., Shea, G. T., Telfer, S. J., and Waterman, S. (1989) CAVEAT: a program to facilitate the structure-derived design of biologically active molecules, in Molecular Recognition in Chemical and Biological Problems, vol. 78 (Roberts, S. M., ed.), Royal Chemistry Society, London, UK, pp. 182–196.

    Google Scholar 

  211. LeapFrog: SYBYL® 6.9.2, http://www.tripos.com/sciTech/inSilicoDisc/media/LITCTR/LEAPFROG.PDF.

  212. Poroikov, V. V., Filimonov, D. A., Borodina, Yu. V., Lagunin, A. A., and Kos, A. (2000) Robustness of biological activity predicting by computer program PASS for noncongeneric sets of chemical compounds. J. Chem. Inf. Comput. Sci. 40, 1349–1355 (http://www.ibmh.msk.su/PASS/).

    PubMed  CAS  Google Scholar 

  213. Biacore 3000 preprint (http://www.biacore.com/lifesciences/products/systems_overview/3000/system_information/index.html).

  214. Biacore S51 preprint (http://www.biacore.com/lifesciences/products/systems_overview/s51/system_information/index.html).

  215. Nagata, K. and Handa, H. (eds.). (2000) Real-Time Analysis of Biomolecular Interactions: Applications of Biacore, Springer-Verlag, Tokyo.

    Google Scholar 

  216. Rich, R. L. and Myszka, D. G. (2000) Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11, 54–61.

    Article  PubMed  CAS  Google Scholar 

  217. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  218. Freiberg, C., Wieland, B., Spaltmann, F., Ehlert, K., Brotz, H., and Labischinski, H. (2001) Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J. Mol. Microbiol. Biotechnol. 3, 483–489.

    PubMed  CAS  Google Scholar 

  219. Belkina, N. V., Skvortsov, V. S., Ivanov, A. S., and Archakov, A. I. (1998) Modeling of a three-dimensional structure of cytochrome P-450 1A2 and search for its new ligands. Vopr. Med. Khim. 44, 464–473 (in Russian).

    PubMed  CAS  Google Scholar 

  220. Kellogg, G. E., Semus, S. F., and Abraham, D. J. (1991) HINT—A new method of empirical hydrophobic field calculation for CoMFA. J. Comput.-Aided Mol. Des. 5, 545–552.

    Article  PubMed  CAS  Google Scholar 

  221. HINT® (Hydropathic INTeractions), http://www.edusoft-lc.com/hint/.

  222. HyperChem, http://www.hyper.com/products/.

  223. Advanced Chemistry Development (ACD), http://www.acdlabs.com/products.

  224. Schonbrun, J., Wedemeyer, W. J., and Baker, D. (2002) Protein structure prediction in 2002. Curr. Opin. Struct. Biol. 12, 348–354.

    Article  PubMed  CAS  Google Scholar 

  225. Fiser, A., Do, R. K., and Sali, A. (2000) Modeling of loops in protein structures. Protein Sci. 9, 1753–1773.

    Article  PubMed  CAS  Google Scholar 

  226. Ooms, F. (2000) Molecular modeling and computer aided drug design: examples of their applications in medicinal chemistry. Curr. Med. Chem. 7, 141–158.

    PubMed  CAS  Google Scholar 

  227. Amzel, L. M. (1998) Structure-based drug design. Curr. Opin. Biotechnol. 9, 366–369.

    Article  PubMed  CAS  Google Scholar 

  228. Yamamoto, K., Masuno, H., Choi, M., et al. (2000) Three-dimensional modeling of and ligand docking to vitamin D receptor ligand binding domain. Proc. Natl. Acad. Sci. USA 97, 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  229. Vangrevelinghe, E., Zimmermann, K., Schoepfer, J., Portmann, R., Fabbro, D., and Furet, P. (2003) Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem. 46, 2656–2662.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Ivanov, A.S., Veselovsky, A.V., Dubanov, A.V., Skvortsov, V.S. (2006). Bioinformatics Platform Development. In: Larson, R.S. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 316. Humana Press. https://doi.org/10.1385/1-59259-964-8:389

Download citation

  • DOI: https://doi.org/10.1385/1-59259-964-8:389

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-346-6

  • Online ISBN: 978-1-59259-964-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics