Skip to main content

Production of Protein Microarrays Using Robotic Pin Printing Technologies

  • Protocol
The Proteomics Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The increased numbers of potential drug targets uncovered through genomics-based approaches have created a demand for screening technologies that enable robust and parallel analysis of many targets, given that it is costly to sort out the targets one by one. Array-based expression analysis (bd1) and mutation mapping 2 of many genes have made a major impact on biology and on drug discovery and development. Whereas genes contain the information of life, their encoded proteins perform nearly all the functions in the cell. Because of this, and the fact that proteins are the targets against which most drugs are designed, it therefore becomes obvious that nothing is more important than deciphering the functions of proteins. Together with genomics, advanced chemical technologies, and high-throughput screening, protein microarray technology has the potential to aid in understanding biological systems or system biology, as well as in developing tomorrow's new medicines

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  2. Favis, R., Day, J. P., Gerry, N. P., Phelan, C., Narod, S., and Barany, F. (2002) Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat. Biotechnol. 18, 561–564.

    Google Scholar 

  3. Lee, K. H.(2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 19, 217–222.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu, H. and Synder, M. (2001) Protein arrays and microarrays. Nat. Biotechnol. 5,40–45.

    CAS  Google Scholar 

  5. Mitchell, P. (2002) A perspective on protein microarrays. Nat. Biotechnol. 20, 225–229.

    Article  PubMed  CAS  Google Scholar 

  6. MacBeath, G. and Schreber, S. L. (2000) Printing proteins as microarrays for high-through-put function determination. Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  7. Schweitzer, B., Wiltshire, S., Lambert, J., et al. (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 97, 10,113–10,119.

    Article  PubMed  CAS  Google Scholar 

  8. Wiltshire, S., O’Malley, S., Lambert, J., et al. (2000) Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clin. Chem. 46,1990–1993.

    PubMed  CAS  Google Scholar 

  9. MacBeath, G., Koehler, A. N., and Schreiber, S. L. (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J. Am. Chem. Soc. 121, 7967–7968.

    Article  CAS  Google Scholar 

  10. Houseman, B. T. and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, D., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.

    Article  PubMed  CAS  Google Scholar 

  12. Fang, Y., Frutos, A. G., and Lahiri, J. (2003) Ganglioside microarrays for toxin detection. Langmiur 19, 1500–1505.

    Article  CAS  Google Scholar 

  13. Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using protein chips. Science 293, 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  14. Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274.

    Article  PubMed  CAS  Google Scholar 

  15. Fang, Y., Frutos, A. G., and Lahiri, J. (2002) Membrane protein microarrays. J. Am. Chem. Soc. 124,2394–2395.

    Article  PubMed  CAS  Google Scholar 

  16. Haga, T. and Berstein, G. (eds) (1999) G Protein-Coupled Receptors. CRC Press, Boca Raton, FL.

    Google Scholar 

  17. Rubina, Y. A., Dementieva, E. I., Stomakhin, A. A., et al. (2003) Hydrogel-based protein microchips: manufacturing, properties, and applications. BioTechniques 34, 1008–1012.

    PubMed  CAS  Google Scholar 

  18. Rowe, C. A., Tender, L. M., Feldstein, M. J., et al. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 71, 3846–3852.

    Article  PubMed  CAS  Google Scholar 

  19. Vijayendran, R. A. and Leckband, D. E. (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480.

    Article  PubMed  CAS  Google Scholar 

  20. Fang, Y., Frutos, A. G., and Lahiri, J. (2002) G protein-coupled receptor microarrays. ChemBioChem 3, 987–991.

    Article  PubMed  CAS  Google Scholar 

  21. Fang, Y., Lahiri, J., and Picard, L. (2003) G protein-coupled receptor microarrays for drug discovery. Drug Discovery Today 8, 755–761.

    Article  PubMed  CAS  Google Scholar 

  22. Okamoto, T., Suzuki, T., and Yamamoto, N. (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.

    Article  PubMed  CAS  Google Scholar 

  23. Kodadek, T. (2001) Protein microarrays: prospects and problems. Chem. Biol. 8,105–115.

    Article  PubMed  CAS  Google Scholar 

  24. Heithier, H., Hallmann, D., Boege, F., et al. (1994) Synthesis and properties of fluorescent beta-adrenoceptor ligands. Biochemistry 33, 9126–9134.

    Article  PubMed  CAS  Google Scholar 

  25. Barroso, S., Francoise, R., Nicolas-Etheve, D., et al. (2000) Identification of residues in-volved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J. Biol. Chem. 275, 328–336.

    Article  PubMed  CAS  Google Scholar 

  26. Bilski, A., Dorries, S., Fitzgerald, J. D., Jessup, R., Tucker, H., and Wale, J. (1980) ICI 118551, a potent β2 adrenoreceptor antagonist. Br. J. Pharmacol. 69, 292–305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Fang, Y., M. Ferrie, A., Lai, F. (2005). Production of Protein Microarrays Using Robotic Pin Printing Technologies. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:723

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:723

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics