Skip to main content

Purification and Analysis of Checkpoint Protein Complexes From Saccharomyces cerevisiae

  • Protocol
Checkpoint Controls and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 280))

  • 1616 Accesses

Abstract

The DNA damage-dependent checkpoint of Saccharomyces cerevisiae is a paradigm for eukaryotic checkpoint pathways that regulate cell cycle progression in the presence of insults to the genetic material. In order to better understand this pathway, we undertook a biochemical study of the proteins implicated in its functioning. Analysis of the hydrodynamic properties of a protein in a crude mixture can give insights into possible tertiary organization such as participation in high-molecular-mass protein complexes. We here describe the determination of Stokes radius and sedimentation coefficients for the Rad24 protein, which enabled us to predict that this protein was a component of a protein complex in crude yeast extracts. This led us to develop a protocol to purify this complex to homogeneity in order to determine the component proteins. The methods described here should be applicable to the hydrodynamic analysis and subsequent purification of any soluble protein from organisms amenable to genetic manipulation, such as yeast, as long as the function of that protein is not perturbed by the addition of an epitope tag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwell, L. H. and Weinert, T. A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  2. Melo, J. and Toczyski, D. (2002) A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14, 237–245.

    Article  PubMed  CAS  Google Scholar 

  3. Rouse, J. and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551.

    Article  PubMed  CAS  Google Scholar 

  4. Lowndes, N. F. and Murguia, J. R. (2000) Sensing and responding to DNA damage. Curr. Opin. Genet. Dev. 10, 17–25.

    Article  PubMed  CAS  Google Scholar 

  5. Gilbert, C. S., Green, C. M. and Lowndes, N. F. (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8, 129–136.

    Article  PubMed  CAS  Google Scholar 

  6. Green, C. M., Erdjument-Bromage, H., Tempst, P., and Lowndes, N.F. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor. Curr. Biol. 10, 39–42.

    Article  PubMed  CAS  Google Scholar 

  7. Rothstein, R. (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301.

    Article  PubMed  CAS  Google Scholar 

  8. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  9. Parks, T. D., Leuther, K. K., Howard, E. D., Johnston, S. A., and Dougherty W. G. (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem. 216, 413–417.

    Article  PubMed  CAS  Google Scholar 

  10. Kolodziej, P. A. and Young, R. A. (1991) Epitope tagging and protein surveillance. Methods Enzymol. 194, 508–519.

    Article  PubMed  CAS  Google Scholar 

  11. Schultz, M. C. (1999) Chromatin assembly in yeast cell-free extracts. Methods 17, 161–172.

    Article  PubMed  CAS  Google Scholar 

  12. Sprules, T., Green, N., Featherstone, M., and Gehring, K. (1998) Nickel-induced oligomerization of proteins containing 10-histidine tags. Biotechniques 25, 20–22.

    PubMed  CAS  Google Scholar 

  13. Schneider, C., Newman, R. A., Sutherland, D. R., Asser, U., and Greaves, M. F. (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J. Biol. Chem. 257, 10766–10769.

    PubMed  CAS  Google Scholar 

  14. Harlow, E and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  15. Martin, R. G. and Ames, B. N. (1961) A method for determining the sedimentation behaviour of enzymes: application to protein mixtures. J. Biol. Chem. 236, 1372–1379.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Green, C.M., Lowndes, N.F. (2004). Purification and Analysis of Checkpoint Protein Complexes From Saccharomyces cerevisiae . In: Schönthal, A.H. (eds) Checkpoint Controls and Cancer. Methods in Molecular Biology™, vol 280. Humana Press. https://doi.org/10.1385/1-59259-788-2:291

Download citation

  • DOI: https://doi.org/10.1385/1-59259-788-2:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-214-8

  • Online ISBN: 978-1-59259-788-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics