Skip to main content

Expression from DNA Injected into Xenopus Embryos

  • Protocol
Molecular Methods in Developmental Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 127))

Abstract

Expression of genes by introduction of DNA into developing embryos can be used to analyze promoter elements that are developmentally regulated or to ectopically express proteins to test their function during development. Because of its large size and resilience to manipulation, the Xenopus embryo is particularly suitable for studies utilizing microinjection, and there is a large body of literature describing successful promoter analysis and ectopic expression experiments. In this chapter, we will outline the fundamental methods and tools for expression of injected DNA in the early embryos of Xenopus. This chapter will not, however, attempt to review the recently developed Xenopus transgenesis procedures (1,2). Although these transgenic methods offer significant advantages over the transient expression methods that we will describe below, the method is still under development and few examples of promoter analysis or of ectopic gene expression studies are yet available. Meanwhile, DNA expression from injected templates provides an efficient and simple method for gene analysis in the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroll, K. L. and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.

    PubMed  CAS  Google Scholar 

  2. Knox, B. E., Schlueter, C., Sanger, B. M., Green, C. B., and Besharse, J. C. (1998) Transgene expression in Xenopus rods. FEBS Lett. 423, 117–121

    Article  PubMed  CAS  Google Scholar 

  3. Colman, A. (1975) Transcription of DNAs of known sequence after injection into eggs and oocytes of Xenopus laevis. Eur. J. Biochem. 57, 85–96.

    Article  PubMed  CAS  Google Scholar 

  4. Mertz, J. E. and Gurdon, J. B. (1977) Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 74, 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  5. Rungger, D. and Turler, H. (1978) DNAs of simian virus 40 and polyoma direct the synthesis of viral tumor antigens and capsid proteins in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 75, 6073–6077.

    Article  PubMed  CAS  Google Scholar 

  6. Kressman, A., Clarkson, S. G., Telford, J. L., and Birnstiel, M. L. (1978) Transcription of Xenopus tRNA met and sea urchin histone DNA injected into Xenopus oocyte nucleus. Cold Spring Harbor Symp. Quant. Biol. 42, 1077–1082.

    Google Scholar 

  7. Etkin, L. D. (1976) Regulation of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) synthesis in liver nuclei, following their transfer into oocytes. Dev. Biol. 52, 201–209.

    Article  PubMed  CAS  Google Scholar 

  8. Probst, E., Kressmann, A., and Birnstiel, M. L. (1979) Expression of sea urchin histone genes in the oocyte of Xenopus laevis. J. Mol. Biol. 135, 709–732.

    Article  PubMed  CAS  Google Scholar 

  9. De Robertis, E. M. and Mertz, J. (1977) Coupled transcription-translation of DNA injected into Xenopus oocytes. Cell 12, 175–182.

    Article  PubMed  Google Scholar 

  10. Bakken, A., Morgan, G., Sollner-Webb, B., Roon, J., Busby, S., and Reeder, R. (1982) Mapping of transcription initiation and termination signals in X. laevis ribosomal DNA. Proc. Natl. Acad. Sci. USA 79, 56–60.

    Article  PubMed  CAS  Google Scholar 

  11. Trendelenburg, M. F. and Gurdon, J. B. (1978) Transcription of cloned Xenopus ribosomal genes visualized after injection into oocyte nuclei. Nature 276, 292–294.

    Article  PubMed  CAS  Google Scholar 

  12. Trendelenburg, M. H., Zentgraf, H., Franke, W. W., and Gurdon, J. B. (1978) Transcription patterns of amplified Dytiscus genes coding for ribosomal RNA after injection into Xenopus oocyte nuclei. Proc. Natl. Acad. Sci. USA 75, 3791–3795.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, D. D. and Gurdon, J. B. (1977) High fidelty transcription of 5S DNA injected into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 74, 2064–2068.

    Article  PubMed  CAS  Google Scholar 

  14. McKnight, S. L., Gavis, E. R., Kingsbury, R., and Axel, R. (1981) Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25, 385–398.

    Article  PubMed  CAS  Google Scholar 

  15. Etkin, L. D. and Maxson, R. E., Jr. (1980) The synthesis of authentic sea urchin transcriptional and translational products by sea urchin histone genes injected into Xenopus laevis. Dev. Biol. 75, 13–25.

    Article  PubMed  CAS  Google Scholar 

  16. Bendig, M. M. (1981) Persistence and expression of histone genes injected into Xenopus laevis eggs in early development. Nature 292, 65–67.

    Article  PubMed  CAS  Google Scholar 

  17. Etkin, L. D. (1982) Analysis of the mechanisms involved in gene regulation and cell differentiation by microinjection of purified genes and somatic cell nuclei into amphibian oocytes and eggs. Differentiation 21, 149–159.

    Article  PubMed  CAS  Google Scholar 

  18. Rusconi, S. and Schaffner, W. (1981) Transformation of frog embryos with a rabbit β-globin gene. Proc. Natl. Acad. Sci. USA 78, 5051–5055.

    Article  PubMed  CAS  Google Scholar 

  19. Etkin, L. D., Pearman, B., Roberts, M., and Bektesh, S. L. (1984) Replication, integration and expression of exogenous DNA injected into fertilized eggs of Xenopus laevis. Differentiation 26, 194–202.

    Article  PubMed  CAS  Google Scholar 

  20. Newport, J. W. and Kirschner, M. W. (1982) A major developmental transition in early Xenopus embyros: I. Characterization and timing of cellular chages at the midblastula stage. Cell 30, 675–686.

    Article  PubMed  CAS  Google Scholar 

  21. Newport, J. W. and Kirschner, M. W. (1982) A major developmental transition in early Xenopus embyros: II. Control of the onset of transcription. Cell 30, 687–696.

    Article  PubMed  CAS  Google Scholar 

  22. Forbes, D. J., Kirschner, M. W., and Newport, J. W. (1983) Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34, 13–23.

    Article  PubMed  CAS  Google Scholar 

  23. Shiokawa, K., Sameshima, M., Tashiro, K., Miura, T., Nakakura, N., and Yamana, K. (1986) Formation of nucleus-like structures in the cytoplasm of lambda injected fertilized eggs and its partitioning into blastomeres during early embryogenesis of Xenopus laevis. Dev. Biol. 116, 539–542.

    Article  PubMed  CAS  Google Scholar 

  24. Etkin, L. D. and Pearman, B. (1987) Distribution, expression, and germ line transmission of exogenous DNA sequences following microinjection in Xenopus laevis eggs. Development 99, 15–23.

    PubMed  CAS  Google Scholar 

  25. Krieg, P. A. and Melton, D. A. (1985) Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. EMBO J. 4, 3463–3471.

    PubMed  CAS  Google Scholar 

  26. Krieg, P. A. and Melton, D. A. (1987) An enhancer responsible for activating transcription at the midblastula transition in Xenopus development. Proc. Natl. Acad. Sci. USA 84, 2331–2335.

    Article  PubMed  CAS  Google Scholar 

  27. Mohun, T. J., Garret, N., and Gurdon, J. B. (1986) Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embyros. EMBO J. 5, 3185–3193.

    PubMed  CAS  Google Scholar 

  28. Wilson, C., Cross, G. S., and Woodland, H. R. (1986) Tissue-specific expression of actin genes injected into Xenopus embryos. Cell 47, 589–599.

    Article  PubMed  CAS  Google Scholar 

  29. Jonas, E. A., Snape, A. M., and Sargent, T. D. (1989) Transcriptional regulation of a Xenopus embyronic epidermal keratin gene. Development 106, 399–405.

    PubMed  CAS  Google Scholar 

  30. Krone, P. H. and Heikkila, J. J. (1989) Expression of microinjected HSP70/CAT and HSP30/CAT chimeric genes in developing Xenopus laevis embryos. Development 106, 271–281.

    PubMed  CAS  Google Scholar 

  31. Brennan, S. M. (1990) Transcription of endogenous and injected cytoskeletal actin genes during early embryonic development in Xenopus laevis. Differentiation 44, 111–121.

    Article  PubMed  CAS  Google Scholar 

  32. Gong, S. G., Reddy, B. A., and Etkin, L. D. (1995) Two forms of Xenopus nuclear factor 7 have overlapping spatial but different temporal patterns of expression during development. Mech. Dev. 52, 305–318.

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura, H., Tashiro, K., and Shiokawa, H. (1996) Isolation of Xenopus HGF gene promoter and its functional analysis in embryos and animal caps. Roux Arch Dev. Biol. 205, 300–310.

    Article  CAS  Google Scholar 

  34. Mohun, T. J., Brennan, S., Dathan, N., Fairman, S., and Gurdon, J. B. (1984) Cell type-specific activation of actin genes in the early amphibian embryo. Nature 311, 716–721.

    Article  PubMed  CAS  Google Scholar 

  35. Liebham, D., Wong, M. W., Cheng, T. C., Schroeder, S., Weil, P. A., Olson, E. N., et al. (1994) Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Mol. Cell. Biol. 14, 686–699.

    Google Scholar 

  36. Steinbeisser, H., Alonso, A., Epperlein, H. H., and Trendelenburg, M. F. (1989) Expression of mouse histone H10 promoter sequences following microinjection into Xenopus oocytes and developing embryos. Int. J. Dev. Biol. 33, 361–368.

    PubMed  CAS  Google Scholar 

  37. Mayor, R., Essex., L. J., Bennett, M. F., and Sargent, M. G. (1993). Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression. Development 119, 661–671.

    PubMed  CAS  Google Scholar 

  38. Chan, A. P. and Gurdon, J. B. (1996). Nuclear transplantation from stably transfected cultured cells of Xenopus. Int. J. Dev. Biol. 40, 441–451.

    PubMed  CAS  Google Scholar 

  39. Gao, X., Kuiken, G. A., Baarends, W. M., Koster, J. G., and Destree, O. H. (1994) Characterization of a functional promoter for the Xenopus wnt-1 gene on vivo. Oncogene 9, 573–581.

    PubMed  CAS  Google Scholar 

  40. Batni, S., Scalzetti, L., Moody, S. A., and Knox, B. E. (1996). Characterization of the Xenopus rhodopsin gene. J. Biol. Chem. 271, 3179–3186.

    Article  PubMed  CAS  Google Scholar 

  41. Weber, H., Holewa, B., Jones, E. A., and Ryffel, G. U. (1996) Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development 122, 1975–1984.

    PubMed  CAS  Google Scholar 

  42. Croissant, J. D., Kim, J. H., Eichele, G., Goering, L., Lough, J., Prywes, R., et al. (1996) Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev. Biol. 177, 250–264.

    Article  PubMed  CAS  Google Scholar 

  43. Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M., and Klein, P. S. (1997) Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91.

    Article  PubMed  CAS  Google Scholar 

  44. Kaufmann, E., Paul, H., Friedle, H., Metz, A., Scheucher, M., Clement, J. H., et al. (1996) Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1′ in Xenopus laevis embryos. EMBO J. 15, 6739–6749.

    PubMed  CAS  Google Scholar 

  45. Johnson, A. D., and Krieg, P. A. (1994) pXeX, a vector for efficient expression of cloned sequences in Xenopus embryos. Gene 147, 223–226.

    Article  PubMed  CAS  Google Scholar 

  46. Vize, P. (1996) DNA sequences mediating the transcription response of the Mix.2 homeobox gene to mesoderm induction. Dev. Biol. 177, 226–231.

    Article  PubMed  CAS  Google Scholar 

  47. Weber, H., Strandmann, E.P., Holewa, B., Bartkowski, S., Zapp, D., Zoidl, C., et al. (1996) Regulation and function of the tissue-specific transcription factor HNF1 alpha (LFB1) during Xenopus development. Int. J. Dev. Biol. 40, 297–304.

    PubMed  CAS  Google Scholar 

  48. Christian, J. L. and Moon, R. T. (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28.

    Article  PubMed  CAS  Google Scholar 

  49. Jones, C. M., Dale, L., Hogan, B. L., Wright, C. V., and Smith, J. C. (1996) Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development 122, 1545–1554.

    PubMed  CAS  Google Scholar 

  50. Cleaver, O., Tonissen, K. F., Saha, M. S., and Krieg, P. A. (1997) Neovascularization of the Xenopus embryo. Dev. Dynam. 210, 66–77.

    Article  CAS  Google Scholar 

  51. Turner, D. L. and Weintraub, H. (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447.

    Article  PubMed  CAS  Google Scholar 

  52. Kuhl, M., Finnemann, S., Binder, O., and Wedlich, D. (1996) Dominant negative expression of a cytoplasmically deleted mutant of XB/U-cadherin disturbs mesoderm migration during gastrulation in Xenopus laevis. Mech. Dev. 54, 71–82.

    Article  PubMed  CAS  Google Scholar 

  53. Wallingford, J. B., Carroll, T. C., and Vize, P. D. (1998) Precocious expression of the Wilms’ Tumor Gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev. Biol. 202, 103–112.

    Article  PubMed  CAS  Google Scholar 

  54. Fu, Y., Wang, Y., and Evans, S. M. (1998) Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nature Biotech. 16, 253–257.

    Article  CAS  Google Scholar 

  55. Sanes, J. R., Rubenstein, J. L., and Nicolas, J. F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142.

    PubMed  CAS  Google Scholar 

  56. Price, J. (1987) Retroviruses and the study of cell lineage. Development 101, 409–419.

    PubMed  CAS  Google Scholar 

  57. Luskin, M. B., Pearlman, A. L., and Sanes, J. R. (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647.

    Article  PubMed  CAS  Google Scholar 

  58. Holt, C. E., Garlick, N., and Cornel, E. (1990) Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4, 203–214.

    Article  PubMed  CAS  Google Scholar 

  59. Moon, R.T. and Christian, J. L. (1989) Microinjection and expression of synthetic mRNAs in Xenopus embryos. Technique 1, 76–78.

    CAS  Google Scholar 

  60. Kay, B.K. (1991) Injection of oocytes and embryos, in Methods in Cell Biology: Xenopus laevis—Practical Uses in Cell and Molecular Biology 36, 663–669.

    Article  CAS  Google Scholar 

  61. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  62. Newmeyer, D. D., and Wilson, K. L. (1991) Egg extracts for nuclear import and nuclear assembly reactions, in Methods in Cell Biology: Xenopus laevis—Practical Uses in Cell and Molecular Biology, 36, 607–634.

    Article  CAS  Google Scholar 

  63. Vize, P. D., Melton, D. A., Hemmati-Brivanlou, A., and Harland, R. M. (1991) Assays for gene function in developing Xenopus embryos, in Methods in Cell Biology: Xenopus laevis—Practical Uses in Cell and Molecular Biology 36, 367–387.

    Article  CAS  Google Scholar 

  64. Snape, A. M., Jonas, E. A., and Sargent, T. D. (1990) KTF-1, a transcriptional activator of Xenopus embryonic keratin expression. Development 109, 157–165.

    PubMed  CAS  Google Scholar 

  65. Marini, N. J., Etkin, L. D., and Benbow, R. M. (1988) Persistence and replication of plasmid DNA microinjected into early embryos of Xenopus laevis. Dev. Biol. 127, 421–434.

    Article  PubMed  CAS  Google Scholar 

  66. Bendig, M. M. and Williams, J. G. (1981) Replication and expression of Xenopus laevis globin genes injected into fertilized Xenopus eggs. Nature 292, 65–67.

    Article  PubMed  CAS  Google Scholar 

  67. Andres, A., Muellener, D. B., and Ryffel, G. U. (1984) Persistence, methylation and expression of vitellogenin gene derivatives after injection into fertilized eggs of Xenopus laevis. Nucleic Acids Res. 12, 2283–2302.

    Article  PubMed  CAS  Google Scholar 

  68. Dale, L. and Slack, J. M. W. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.

    PubMed  CAS  Google Scholar 

  69. Moody, S. A. (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev. Biol. 122, 300–319.

    Article  PubMed  CAS  Google Scholar 

  70. Cleaver, O. B., Patterson, K. D., and Krieg, P. A. (1996) Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122, 3549–3556.

    PubMed  CAS  Google Scholar 

  71. Wallingford, J. B., Seufert, D. W., Virta, V. C., and Vize, P. D. (1997) p53 activity is essential for normal development in Xenopus. Curr. Biol. 7, 747–757.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Cleaver, O., Krieg, P.A. (1999). Expression from DNA Injected into Xenopus Embryos. In: Guille, M. (eds) Molecular Methods in Developmental Biology. Methods in Molecular Biology™, vol 127. Humana Press. https://doi.org/10.1385/1-59259-678-9:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-678-9:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-790-8

  • Online ISBN: 978-1-59259-678-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics