Skip to main content

Colorimetric Assays for Screening Laccases

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

Abstract

In this chapter, we describe colorimetric methods for screening laccases using natural and nonnatural substrates. Laccases (EC 1.10.3.1) are blue-copper enzymes that oxidize phenols, polyphenols, and anilines (1,2). The catalytic capabilities of laccase can be greatly enhanced by the addition of suitable mediator compounds. In the presence of some of its primary substrates (such as 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid [ABTS] or 1-hydroxy-benzothiazole [HBT], laccase can catalyze the oxidation of nonnatural substrates, including polycyclic aromatic hydrocarbons (PAHs), a class of highly toxic organic pollutants widely distributed in terrestrial and aquatic environments (37). The mechanism of oxidation by laccase-mediator systems (LMS) is still under discussion. In spite of enhancing the range of compounds amenable to oxidation by laccases, mediators have several disadvantages: they are expensive, poisonous, and show side reactions with substrates and products, leading to reduced yield and impurity of the products. Inactivation of laccase by free radicals of the mediators is an additional drawback (8,9). To optimize laccases for mediated applications or make them independent of mediators using directed evolution requires mediator-dependent screens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arnold, F. H. and Volkov, A. A. (1999) Directed evolution of biocatalysts. Curr. Opin. Biotech. 3, 54–59.

    Article  CAS  Google Scholar 

  2. Gianfreda, L., Xu, F., and Bollag, J. M. (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 3, 1–25.

    Article  CAS  Google Scholar 

  3. Collins, P. J., Kotterman, M. J. J., Field, J. A., and Dobson, A. D. W. (1996) Oxidation of antrhacene and benzo[a]pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol. 62, 4563–4567.

    PubMed  CAS  Google Scholar 

  4. Johannes, C., Majcherczyk, A., and Huttermann, A. (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol. 46, 313–317.

    Article  PubMed  CAS  Google Scholar 

  5. Majecherczyk, A., Johannes, C., and Huttermann, A. (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Tech. 22, 335–341.

    Article  Google Scholar 

  6. Johannes, C., Majcherczyk, A., and Huttermann, A. (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotech. 61, 151–156.

    Article  CAS  Google Scholar 

  7. Pickard, M. A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65, 3805–3809.

    PubMed  CAS  Google Scholar 

  8. Johannes, C. and Majcherczyk, A. (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524–528.

    Article  PubMed  CAS  Google Scholar 

  9. Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., and Borneman, S. (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63, 4627–4632.

    PubMed  CAS  Google Scholar 

  10. Childs, R. E. and Bardsley, W. G. (1975) The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 145, 93–103.

    PubMed  CAS  Google Scholar 

  11. Alcalde, M., Bulter, T., and Arnold, F. H. (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J. Biom. Screen 6, 537–543.

    Google Scholar 

  12. Field, J. A., de Jong, E., Feijoo-Costa, G., and de Bont, J. M. (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58, 2219–2226.

    PubMed  CAS  Google Scholar 

  13. Field, J. A., de Jong, E., Feijoo-Costa, G., and de Bont, J. M. (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Tibtech 11, 44–49.

    CAS  Google Scholar 

  14. Kotterman, M. J. J., Heessels, E., de Jong, E., and Field, J. A. (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appl. Microbiol. Biotechnol. 42, 179–186.

    Article  CAS  Google Scholar 

  15. Xu, F. (1996) Catalysis of novel enzymatic iodide oxidation by fungal laccase. Appl. Biochem. Biotech. 59, 221–230.

    Article  CAS  Google Scholar 

  16. Fieser, L. F. and Fieser, M. (Eds.) (1967) Reagents for Organic Synthesis. J. Wiley & Sons, New York, NY.

    Google Scholar 

  17. Holm, K. A., Nielsen, D. M., and Eriksen, J. (1998) Automated colorimetric determination of recombinant fungal laccase activity in fermentation samples using syringaldazine as chromogenic substrate. J. Autom. Chem. 20, 199–203.

    CAS  Google Scholar 

  18. Glenn, J. K. and Gold, M. H. (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45, 1741–1747.

    PubMed  CAS  Google Scholar 

  19. Gold, M. H., Glenn, J. K., and Alic, M. (1988) Use of polymeric dyes in lignin biodegradation assays. Meth. Enzymol. 161, 74–78.

    Article  CAS  Google Scholar 

  20. Ramette, R. W. and Sandford, R. W. (1965) Thermodynamics of iodine solubility and triiodide formation in water and in deuterium oxide. J. Am. Chem. Soc. 87, 5001–5005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Alcalde, M., Bulter, T. (2003). Colorimetric Assays for Screening Laccases. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:193

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:193

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics