Skip to main content

Mutation Screening Using PCR-SSCP

Silver Staining and Isotopic Protocols

  • Protocol
The Nucleic Acid Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 136 Accesses

Abstract

Screening for mutations prior to sequencing can reduce the time and costs of identifying mutations. When the DNA sequence is known, the technique of detecting mutations as single-stranded conformational polymorphisms (SSCP) is a convenient method of screening for possible mutations. SSCP was originally developed by Orita et al. (1). It has the ability of detecting a single base change, and has been applied to a number of genes, including the insulin receptor (2), GLUT 4 (3), glucokinase (4), and the mitochondrial genome (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879.

    Article  PubMed  CAS  Google Scholar 

  2. O’Rahilly, S., Choi, W. H., Patel, P., Turner, R. C., Flier, J. S., and Moller, D. E. (1991) Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of single-stranded conformation polymorphisms. Diabetes 40, 777–782.

    Article  PubMed  Google Scholar 

  3. Choi, W. H., O’Rahilly, S., Buse, J. B., Rees, A., Morgan, R., Flier, J. S., and Moller, D. E. (1991) Molecular scanning of insulin-responsive glucose transporter (Glut4) gene in NIDDM subjects. Diabetes 40, 1712–1718.

    Article  PubMed  CAS  Google Scholar 

  4. Vionnet, N., Stoffel, M., Takeda, J., Yasuda, K., Bell, G. I., Zouali, H., Lesage, S., Velho, G., Iris, F., Passa, Ph., Froguel, P., and Cohen, D. (1992) Nonsense mutation of the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356, 721,722.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas A. W., Morgan, R., Rees, A. E., and Alcolado, J. C. (1994) Rapid and reliable detection of mtDNA mutations in patients with maternally inherited diabetes. Diabetic Medicine (Supplement 1) A18, S7.

    Google Scholar 

  6. Sheffield, S. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. (1993) The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16, 325–332.

    Article  PubMed  CAS  Google Scholar 

  7. Merrill, C. R., Goldman, D., Sedman, S. A., and Ebert, M. H. (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211, 1437,1438.

    Article  Google Scholar 

  8. Elbein, S. C., Sorensen, L. K., and Schumacher, C. (1993) Substitution in exon 17 of the insulin receptor gene in a pedigree with familial NIDDM. Diabetes 42, 429–434.

    Article  PubMed  CAS  Google Scholar 

  9. Chiu, K. C., Tanizawa, Y., and Permutt, M. A. (1993) Glucokinase gene variants in the common form of NIDDM. Diabetes 40, 579–582.

    Article  Google Scholar 

  10. Hager, J., Blanche, H., Sun, F., Vionnet, N., Vaxillaire, M., Poller, W., Cohen, D., Czernichow, P., Velho, G., Robert, J.-J., Cohen, N., and Froguel, P. (1994) Six mutations in the glucokinase gene identified in MODY by using a non-radioactive sensitive screening technique. Diabetes 43, 730–733.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas, A. W., Morgan, R., Majid, A., Rees, A., and Alcolado, J. C. (1995) Detection of mitochondrial DNA mutations in patients with diabetes mellitus. Diabetologia 38, 376–379.

    Article  PubMed  CAS  Google Scholar 

  12. Stoffel, M., Patel, P., Lo, Y. M. D., Hattersley, A. T., Lucassen, A. M., Page, R., Bell, J. I., Bell, G. I., Turner, R. C., and Wainscoat, J. S. (1992) Characterisation of a missense glucokinase mutation in maturity-onset diabetes of the young (MODY) and mutation screening in late-onset diabetes. Nature Genetics 2, 153–156.

    Article  PubMed  CAS  Google Scholar 

  13. Saker, P. J., Hattersley, A. T., Barrow, B., Hammersley, M., et al. (1996) High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder effect in a local population. Diabetologia 39, 1325–1328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Saker, P.J. (2000). Mutation Screening Using PCR-SSCP. In: Rapley, R. (eds) The Nucleic Acid Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-038-1:695

Download citation

  • DOI: https://doi.org/10.1385/1-59259-038-1:695

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-459-4

  • Online ISBN: 978-1-59259-038-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics